适用于稀疏隐式反馈数据的双重去偏协同过滤推荐算法
作者:
基金项目:

国家自然科学基金 (12171451); 中国博士后科学基金(2023M733406)


Dual Debiased Collaborative Filtering Recommendation Algorithm Suitable for Sparse Implicit Feedback Data
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    隐式反馈数据是推荐系统的重要数据来源, 但通常是稀疏的, 并且存在曝光偏差和从众偏差. 已知的去偏方法往往只针对其中一种偏差, 影响个性化推荐的效果, 或者需要一个昂贵的无偏数据集作为多重去偏的辅助信息. 为此, 本文提出了一个适用于稀疏隐式反馈数据, 同时对曝光偏差和从众偏差去偏的协同过滤推荐算法. 该算法通过我们提出的双重逆倾向加权方法和对比学习辅助任务去除输入双塔自编码器的隐式反馈数据中包含的两种偏差, 估计用户对物品的偏好概率. 实验结果显示, 本文的算法在公开无偏数据集Coat、Yahoo!R3上, 归一化折扣累积增益NDCG@K、均值平均精度MAP@K和召回率Recall@K优于对比的算法.

    Abstract:

    Implicit feedback data plays a crucial role in recommender systems, but it often suffers from sparsity and biases, including exposure bias and conformity bias. Existing debiasing methods tend to address only one type of bias, which can impact personalized recommendation effectiveness, or require a expensive debiased dataset as auxiliary information for multiple debiasing. To address this issue, a collaborative filtering recommendation algorithm specifically designed for sparse implicit feedback data, which can simultaneously debias exposure bias and conformity bias, is proposed. The algorithm utilizes the proposed dual inverse propensity weighting method and a contrastive learning auxiliary task to remove the two biases contained in the implicit feedback data which are input into dual-tower autoencoders so that the complete algorithm can estimate users’ preference probability to items. Experimental results demonstrate that the proposed algorithm outperforms comparative algorithms in terms of normalized discounted cumulative gain (NDCG@K), mean average precision (MAP@K), and recall (Recall@K) on publicly available debiased datasets such as Coat and Yahoo!R3.

    参考文献
    [1] Linden G, Smith B, York J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76–80.
    [2] Lee JW, Park S, Lee J, et al. Bilateral self-unbiased learning from biased implicit feedback. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022. 29–39.
    [3] Chen JW, Dong HD, Wang X, et al. Bias and debias in recommender system: A survey and future directions. ACM Transactions on Information Systems, 2023, 41(3): 67.
    [4] 邱阳. 面向推荐系统数据偏差的去偏方法研究 [硕士学位论文]. 合肥: 中国科学技术大学, 2023.
    [5] Saito Y, Yaginuma S, Nishino Y, et al. Unbiased recommender learning from missing-not-at-random implicit feedback. Proceedings of the 13th International Conference on Web Search and Data Mining. Houston: ACM, 2020. 501–509.
    [6] Gupta S, Oosterhuis H, de Rijke M. A deep generative recommendation method for unbiased learning from implicit feedback. Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval. Taipei: ACM, 2023. 87–93.
    [7] Truong QT, Salah A, Lauw HW. Bilateral variational autoencoder for collaborative filtering. Proceedings of the 14th ACM International Conference on Web Search and Data Mining. ACM, 2021. 292–300.
    [8] Wu L, He XN, Wang X, et al. A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4425–4445.
    [9] Kerley CI, Cai LY, Tang YC, et al. Batch size go big or go home: Counterintuitive improvement in medical autoencoders with smaller batch size. Proceedings of SPIE 12464, Medical Imaging 2023: Image Processing. San Diego: SPIE, 2023. 124640H.
    [10] Sedhain S, Menon AK, Sanner S, et al. AutoRec: Autoencoders meet collaborative filtering. Proceedings of the 24th International Conference on World Wide Web. Florence: ACM, 2015. 111–112.
    [11] Khawar F, Poon L, Zhang NL. Learning the structure of auto-encoding recommenders. Proceedings of the 2020 Web Conference. Taipei: ACM, 2020. 519–529.
    [12] Wu Y, DuBois C, Zheng AX, et al. Collaborative denoising auto-encoders for top-N recommender systems. Proceedings of the 9th ACM International Conference on Web Search and Data Mining. San Francisco: ACM, 2016. 153–162.
    [13] Jing MY, Zhu YM, Zang TZ, et al. Contrastive self-supervised learning in recommender systems: A survey. ACM Transactions on Information Systems, 2024, 42(2): 59.
    [14] Yu JL, Yin HZ, Xia X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022. 1294–1303.
    [15] Wang TZ, Isola P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. Proceedings of the 37th International Conference on Machine Learning. JMLR.org, 2020. 1–11.
    [16] Zhou GL, Huang CK, Chen XC, et al. Contrastive counterfactual learning for causality-aware interpretable recommender systems. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. Birmingham: ACM, 2023. 3564–3573.
    [17] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
    [18] Gao TY, Yao XC, Chen DQ. SimCSE: Simple contrastive learning of sentence embeddings. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. ACL, 2021. 6894–6910.
    [19] Yao TS, Yi XY, Cheng DZ, et al. Self-supervised learning for large-scale item recommendations. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, 2021. 4321–4330.
    [20] Marlin BM, Zemel RS. Collaborative prediction and ranking with non-random missing data. Proceedings of the 3rd ACM Conference on Recommender Systems. New York: ACM, 2009. 5–12.
    [21] Schnabel T, Swaminathan A, Singh A, et al. Recommendations as treatments: Debiasing learning and evaluation. Proceedings of the 33rd International Conference on Machine Learning. New York: PMLR, 2016. 1670–1679.
    [22] Hu YF, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. Proceedings of the 8th IEEE International Conference on Data Mining. Pisa: IEEE, 2008. 263–272.
    [23] Zhu ZW, He Y, Zhang Y, et al. Unbiased implicit recommendation and propensity estimation via combinational joint learning. Proceedings of the 14th ACM Conference on Recommender Systems. ACM, 2020. 551–556.
    [24] Wei TX, Feng FL, Chen JW, et al. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, 2021. 1791–1800.
    [25] Chen JW, Dong HD, Qiu Y, et al. AutoDebias: Learning to debias for recommendation. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2021. 21–30.
    [26] Zheng Y, Gao C, Li X, et al. Disentangling user interest and conformity for recommendation with causal embedding. Proceedings of the 2021 Web Conference. Ljubljana: ACM, 2021. 2980–2991.
    [27] He XN, Deng K, Wang X, et al. LightGCN: Simplifying and powering graph convolution network for recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020. 639–648.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁雨辰,徐建军,崔文泉.适用于稀疏隐式反馈数据的双重去偏协同过滤推荐算法.计算机系统应用,2024,33(8):145-154

复制
分享
文章指标
  • 点击次数:285
  • 下载次数: 772
  • HTML阅读次数: 543
  • 引用次数: 0
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-03-28
  • 在线发布日期: 2024-07-03
文章二维码
您是第11464184位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号