适用于稀疏隐式反馈数据的双重去偏协同过滤推荐算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (12171451); 中国博士后科学基金(2023M733406)


Dual Debiased Collaborative Filtering Recommendation Algorithm Suitable for Sparse Implicit Feedback Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    隐式反馈数据是推荐系统的重要数据来源, 但通常是稀疏的, 并且存在曝光偏差和从众偏差. 已知的去偏方法往往只针对其中一种偏差, 影响个性化推荐的效果, 或者需要一个昂贵的无偏数据集作为多重去偏的辅助信息. 为此, 本文提出了一个适用于稀疏隐式反馈数据, 同时对曝光偏差和从众偏差去偏的协同过滤推荐算法. 该算法通过我们提出的双重逆倾向加权方法和对比学习辅助任务去除输入双塔自编码器的隐式反馈数据中包含的两种偏差, 估计用户对物品的偏好概率. 实验结果显示, 本文的算法在公开无偏数据集Coat、Yahoo!R3上, 归一化折扣累积增益NDCG@K、均值平均精度MAP@K和召回率Recall@K优于对比的算法.

    Abstract:

    Implicit feedback data plays a crucial role in recommender systems, but it often suffers from sparsity and biases, including exposure bias and conformity bias. Existing debiasing methods tend to address only one type of bias, which can impact personalized recommendation effectiveness, or require a expensive debiased dataset as auxiliary information for multiple debiasing. To address this issue, a collaborative filtering recommendation algorithm specifically designed for sparse implicit feedback data, which can simultaneously debias exposure bias and conformity bias, is proposed. The algorithm utilizes the proposed dual inverse propensity weighting method and a contrastive learning auxiliary task to remove the two biases contained in the implicit feedback data which are input into dual-tower autoencoders so that the complete algorithm can estimate users’ preference probability to items. Experimental results demonstrate that the proposed algorithm outperforms comparative algorithms in terms of normalized discounted cumulative gain (NDCG@K), mean average precision (MAP@K), and recall (Recall@K) on publicly available debiased datasets such as Coat and Yahoo!R3.

    参考文献
    相似文献
    引证文献
引用本文

丁雨辰,徐建军,崔文泉.适用于稀疏隐式反馈数据的双重去偏协同过滤推荐算法.计算机系统应用,2024,33(8):145-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-03-28
  • 录用日期:
  • 在线发布日期: 2024-07-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号