基于多尺度差异聚合机制的遥感影像道路提取
作者:
基金项目:

辽宁省教育厅科学技术研究项目(LJKZ0338)


Road Extraction from Remote Sensing Image Based on Multi-scale Difference Aggregation Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对高分辨率遥感图像中地物背景复杂多样, 成像过程中道路区域易受树木、建筑物遮挡影响, 从中提取道路时易出现局部断连和细节缺失问题, 设计并实现了一种基于多尺度差异聚合机制的道路提取网络模型(MSDANet). 网络模型整体采用编码-解码器结构, 使用Res2Net模块作为编码器骨干网络获取细粒度多尺度特征信息, 增大特征提取感受野; 同时结合道路形态特征提出一种门控轴向引导模块, 用于突出道路特征的表达, 改善道路提取长距离断裂现象; 此外, 设计了一种应用于编解码器之间的多尺度差异聚合模块, 用以提取浅层与深层特征间的差异信息并将其聚合, 并通过特征融合模块将聚合特征与解码特征融合, 促进解码器准确还原道路特征; 在高分辨率遥感数据集DeepGlobe和CHN6-CUG上进行模型实验评估, 所提方法的F1值分别为80.37%、78.17%, IoU分别为67.18%、64.17%, 均优于对比模型.

    Abstract:

    In the extraction of roads from high-resolution remote sensing images, problems such as local disconnections and the loss of details are common due to the complex backgrounds and the presence of trees and buildings covering the roads during the image formation process. To solve these problems, this study proposes a road extraction model called MSDANet, based on a multi-scale difference aggregation mechanism. The model has an encoder-decoder structure, using the Res2Net module as the backbone network of the encoder to obtain information with fine-grained and multi-scale features from the images and to expand the receptive field for feature extraction. Additionally, a gated axial guidance module, in conjunction with road morphological features, is applied to highlight the representation of road features and improve the connectivity of long-distance roads in road extraction. Furthermore, a multi-scale difference aggregation module is used between the encoder and decoder to extract and aggregate the different information between shallow and deep features. The aggregated features are then fused with the decoded features through a feature fusion module to facilitate the decoder to accurately restore road features. The proposed method has been evaluated on two high-resolution remote sensing datasets: DeepGlobe and CHN6-CUG. The results show that the F1 score of the MSDANet model is 80.37% and 78.17% respectively, and the IoU is 67.18% and 64.17% respectively. It indicates that the proposed model outperforms the comparison models.

    参考文献
    [1] 赫晓慧, 李代栋, 李盼乐, 等. 基于EDRNet模型的高分辨率遥感影像道路提取. 计算机工程, 2021, 47(9): 297–303, 312.
    [2] 戴激光, 王杨, 杜阳, 等. 光学遥感影像道路提取的方法综述. 遥感学报, 2020, 24(7): 804–823.
    [3] Geng K, Sun X, Yan ZY, et al. Topological space knowledge distillation for compact road extraction in optical remote sensing images. Remote Sensing, 2020, 12(19): 3175.
    [4] Sarukkai V, Jain A, Uzkent B, et al. Cloud removal in satellite images using spatiotemporal generative networks. Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass: IEEE, 2020. 1785–1794.
    [5] Dai L, Zhang GY, Zhang RT. RADANet: Road augmented deformable attention network for road extraction from complex high-resolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–13.
    [6] Chen ZY, Deng LA, Lu YH, et al. Road extraction in remote sensing data: A survey. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102833.
    [7] 佘佐明, 申勇智, 宋剑虹, 等. 利用经典CNN网络方法构建贵阳市道路要素遥感影像自动提取模型. 测绘通报, 2023(4): 177–182.
    [8] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [9] Chaurasia A, Culurciello E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. Proceedings of the 2017 IEEE Visual Communications and Image Processing. St. Petersburg: IEEE, 2017. 1–4.
    [10] Zhou LC, Zhang C, Wu M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City: IEEE, 2018. 192–1924.
    [11] He X, Zhou Y, Zhao JQ, et al. Swin Transformer embedding UNet for remote sensing image semantic segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4408715.
    [12] Zhong GQ, Ling X, Wang LN. From shallow feature learning to deep learning: Benefits from the width and depth of deep architectures. WIREs Data Mining and Knowledge Discovery, 2019, 9(1): e1255.
    [13] 张亚宁, 张春亢, 王朝, 等. 融合残差和卷积注意力机制的U-Net网络高分影像道路提取. 航天返回与遥感, 2023, 44(3): 119–132.
    [14] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [15] Wang Y, Seo J, Jeon T. NL-LinkNet: Toward lighter but more accurate road extraction with nonlocal operations. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3000105.
    [16] Wang XL, Girshick R, Gupta A, et al. Non-local neural networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7794–7803.
    [17] 张立恒, 王浩, 薛博维, 等. 基于改进D-LinkNet模型的高分遥感影像道路提取研究. 计算机工程, 2021, 47(9): 288–296.
    [18] 陈国军, 朱燕宁, 耿润田, 等. 基于iHDODC-LinkNet网络的遥感图像道路提取方法. 光电子·激光, 2024, 35(1): 51–58.
    [19] 陈果, 胡立坤. 基于边缘引导和多尺度感知的遥感图像道路提取. 激光杂志, 1–6. http://kns.cnki.net/kcms/detail/50.1085.TN.20231103.1339.004.html. [2024-02-29].
    [20] Gao SH, Cheng MM, Zhao K, et al. Res2Net: A new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652–662.
    [21] Stergiou A, Poppe R, Kalliatakis G. Refining activation downsampling with SoftPool. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021. 10337–10346.
    [22] Valanarasu JMJ, Oza P, Hacihaliloglu I, et al. Medical Transformer: Gated axial-attention for medical image segmentation. Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention. Strasbourg: Springer, 2021. 36–46.
    [23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [24] Shaw P, Uszkoreit J, Vaswani A. Self-attention with relative position representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans: ACL, 2018. 464–468.
    [25] Demir I, Koperski K, Lindenbaum D, et al. DeepGlobe 2018: A challenge to parse the earth through satellite images. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City: IEEE, 2018. 172–17209.
    [26] Zhu QQ, Zhang YN, Li ZQ, et al. Oil spill contextual and boundary-supervised detection network based on marine SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5213910.
    [27] Loshchilov I, Hutter F. Decoupled weight decay regularization. Proceedings of the 7th International Conference on Learning Representations. New Orleans: OpenReview.net, 2019. 1–19.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许明,周春晖,姜彦吉.基于多尺度差异聚合机制的遥感影像道路提取.计算机系统应用,2024,33(9):95-104

复制
分享
文章指标
  • 点击次数:321
  • 下载次数: 1158
  • HTML阅读次数: 777
  • 引用次数: 0
历史
  • 收稿日期:2024-03-01
  • 最后修改日期:2024-04-01
  • 在线发布日期: 2024-07-26
文章二维码
您是第11355627位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号