摘要:在三维人体姿态估计任务当中, 人体关节之间的连接关系形成了一种复杂的拓扑结构, 利用图卷积网络对该结构进行建模, 可以有效捕捉局部关节间的联系; 尽管不相邻关节之间没有直接的物理连接, 但由于人体的运动和姿态受到生物力学约束以及人体关节之间的协同作用, 利用Transformer编码器建立关节之间的上下文关系, 可以更好地推断出人体姿态; 在大模型的背景下, 如何在保证模型性能的同时, 降低参数量, 也显得尤为重要. 针对上述问题, 设计了一个基于图卷积和Transformer的多层空间特征融合网络模型(MLSFFN), 在使用相对少量的参数基础上, 有效地融合了局部和全局空间特征. 实验结果表明, 本文提出的方法在仅需2.1M参数量的情况下, 在Human3.6M数据集上达到了49.9 mm的平均每关节误差(MPJPE). 此外, 模型在MPI-INF-3DHP数据集上也展示出了较强的泛化能力.