信息年龄敏感的稀疏移动群智感知机制
作者:
基金项目:

国家自然科学基金面上项目(62172386, 61872330); 江苏省自然科学基金面上项目(BK20231212)


Age-of-information-aware Sparse Mobile Crowdsensing Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    稀疏移动群智感知是一种新兴的模式, 它从感知区域的子集收集数据, 然后推理其他区域的数据. 然而, 在实际应用中, 工人不足或分布不均的情况广泛存在. 因此, 在有限的预算下, 必须优先选择相对更重要的工人收集数据. 此外, 许多稀疏移动群智感知应用对数据的时效性要求较高. 因此本文将考虑数据的新鲜度, 并使用信息年龄作为新鲜度指标. 为了解决这些挑战, 本文提出了一种轻量级年龄敏感的数据感知和推理框架. 该框架旨在预算约束下, 选择合适的工人收集数据, 并通过准确捕捉感知数据时空关系进行数据推理, 以优化信息年龄和推理的准确性. 由于预算和工人有限, 可能会导致数据量较少的情况. 因此, 本文还提出了精简数据推理模型的方法, 以提高推理效率. 通过广泛的实验进一步论证了该框架在实际应用中的优越性.

    Abstract:

    Sparse mobile crowdsensing (MCS) is an emerging paradigm that collects data from a subset of sensing areas and then infers data from other areas. However, there is a shortage or uneven distribution of workers when sparse MCS is applied. Therefore, with a limited budget, it is important to prioritize the involvement of the more important workers in data collection. Additionally, many sparse MCS applications require timely data. Consequently, this study considers data freshness, with age of information (AoI) serving as a freshness metric. To address these challenges, a simplified AoI-aware sensing and inference (SASI) framework is proposed in this study. This framework aims to optimize AoI and inference accuracy by selecting suitable workers for data collection under budget constraints and accurately capturing spatiotemporal relationships in sensed data for inference. Moreover, limited budgets and worker availability may result in a reduced volume of data. Thus, methods for streamlining data inference models are also proposed to enhance inference efficiency. Experiments have substantiated the superiority of this framework in practice.

    参考文献
    [1] Capponi A, Fiandrino C, Kantarci B, et al. A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2419–2465.
    [2] Wang E, Liu WT, Liu WB, et al. Spatiotemporal urban inference and prediction in sparse mobile crowdsensing: A graph neural network approach. IEEE Transactions on Mobile Computing, 2023, 22(11): 6784–6799.
    [3] Xue JZ, Xu YT, Wu W, et al. Sparse mobile crowdsensing for cost-effective traffic state estimation with spatio-temporal transformer graph neural network. IEEE Internet of Things Journal, 2024, 11(9): 16227–16242.
    [4] Zhao ST, Qi GZ, He TJ, et al. A survey of sparse mobile crowdsensing: Developments and opportunities. IEEE Open Journal of the Computer Society, 2022, 3: 73–85.
    [5] Kaul S, Yates R, Gruteser M. Real-time status: How often should one update? Proceedings of the 2012 IEEE INFOCOM. Orlando: IEEE, 2012. 2731–2735.
    [6] Yates RD, Sun Y, Brown DR, et al. Age of information: An introduction and survey. IEEE Journal on Selected Areas in Communications, 2021, 39(5): 1183–1210.
    [7] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [8] Wang LY, Zhang DQ, Yang DQ, et al. SPACE-TA: Cost-effective task allocation exploiting intradata and interdata correlations in sparse crowdsensing. ACM Transactions on Intelligent Systems and Technology, 2018, 9(2): 20.
    [9] Xie K, Tian JZ, Xie GG, et al. Low cost sparse network monitoring based on block matrix completion. IEEE Conference on Computer Communications. Vancouver: IEEE, 2021. 1–10.
    [10] Liu WB, Yang YJ, Wang E, et al. Dynamic online user recruitment with (non-) submodular utility in mobile crowdsensing. IEEE/ACM Transactions on Networking, 2021, 29(5): 2156–2169.
    [11] Ehsani S, Hajiaghayi M, Kesselheim T, et al. Prophet secretary for combinatorial auctions and matroids. Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans: SIAM, 2018. 700–714.
    [12] He B, Hofmann T. Simplifying transformer blocks. arXiv:2311.01906, 2023.
    [13] Dong YH, Cordonnier JB, Loukas A. Attention is not all you need: Pure attention loses rank doubly exponentially with depth. Proceedings of the 38th International Conference on Machine Learning. PMLR, 2021. 2793–2803.
    [14] Noci L, Anagnostidis S, Biggio L, et al. Signal propagation in Transformers: Theoretical perspectives and the role of rank collapse. Proceedings of the 36th Conference on Neural Information Processing Systems. New Orleans, 2022.
    [15] He B, Martens J, Zhang GD, et al. Deep Transformers without shortcuts: Modifying self-attention for faithful signal propagation. Proceedings of the 11th International Conference on Learning Representations. Kigali: OpenReview.net, 2023.
    [16] Zheng Y, Liu FR, Hsieh HP. U-air: When urban air quality inference meets big data. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago: ACM, 2013. 1436–1444.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵雅馨,肖明军.信息年龄敏感的稀疏移动群智感知机制.计算机系统应用,2024,33(8):115-122

复制
分享
文章指标
  • 点击次数:260
  • 下载次数: 823
  • HTML阅读次数: 454
  • 引用次数: 0
历史
  • 收稿日期:2024-02-25
  • 最后修改日期:2024-03-28
  • 在线发布日期: 2024-07-03
文章二维码
您是第11183753位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号