摘要:稀疏移动群智感知是一种新兴的模式, 它从感知区域的子集收集数据, 然后推理其他区域的数据. 然而, 在实际应用中, 工人不足或分布不均的情况广泛存在. 因此, 在有限的预算下, 必须优先选择相对更重要的工人收集数据. 此外, 许多稀疏移动群智感知应用对数据的时效性要求较高. 因此本文将考虑数据的新鲜度, 并使用信息年龄作为新鲜度指标. 为了解决这些挑战, 本文提出了一种轻量级年龄敏感的数据感知和推理框架. 该框架旨在预算约束下, 选择合适的工人收集数据, 并通过准确捕捉感知数据时空关系进行数据推理, 以优化信息年龄和推理的准确性. 由于预算和工人有限, 可能会导致数据量较少的情况. 因此, 本文还提出了精简数据推理模型的方法, 以提高推理效率. 通过广泛的实验进一步论证了该框架在实际应用中的优越性.