摘要:随着GPS定位技术和移动互联网的发展, 各类LBS (location-based service)应用积累了大量带有位置和文本标记的空间文本数据, 这些数据广泛应用于市场营销、城市规划等设施选址决策中. 空间文本选址的目标是从候选位置集合中挖掘最佳地点新建设施, 以期影响最多空间文本对象, 如用户或车辆等, 其中空间距离越接近且文本越相似则影响力越大. 现有方案未考虑现实普遍存在的同行竞争, 也忽略了用户对设施的评价因素. 为更合理地在同行竞争环境结合用户评级进行选址决策, 本文提出新的空间文本竞争选址问题CoSTUR. 通过引入权衡影响的确定性和数量的阈值, 解决传统模型中对象只能被单一设施影响的局限, 建模了用户可能同时受多个设施影响的真实情况. 借鉴经典的竞争均分模型, 实现了不同评级设施间竞争量化. 为降低大规模数据导致的高昂计算代价, 构建了新型空间文本索引结构TaR-tree, 并结合阈值设计基于影响范围的两个剪枝策略, 实现基于分支定界思想的空间连接和范围查询两种方案. 在真实和合成数据集上的实验结果显示, 相比基线算法计算效率能够提升近一个量级, 说明提出方法的有效性.