融合结构邻居和语义邻居的解耦图对比学习推荐模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFC0808500)


Disentangled Graph Contrastive Learning Recommendation Model Integrating Structural Neighbor and Semantic Neighbor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于GCN的协同过滤模型在推荐领域取得了较好的效果, 但现有的图协同过滤学习方法通常不区分用户和项目的交互关系, 不易挖掘用户行为的潜在意图. 因此, 提出了一种融合结构邻居和语义邻居的解耦图对比学习推荐模型. 首先, 将用户和项目嵌入投影到独立空间进行意图解耦; 其次, 在图传播阶段, 依据用户和项目的意图特征挖掘其潜在语义邻居, 根据意图相似性对结构邻居和语义邻居进行解耦表征学习, 生成用户和项目的完整高阶表示. 在对比学习阶段, 对节点进行随机扰动并生成对比视图, 构建结构和语义的对比学习任务; 最后, 根据多任务策略, 对监督任务和对比学习任务进行联合优化. 在真实数据集Yelp2018和Amazon-Book上的实验表明, 提出的模型相比最优基准模型NCL在两个数据集上的Recall@20指标提高了7.54%、5.65%, NDCG@20指标提高了8.57%、6.28%.

    Abstract:

    The GCN-based collaborative filtering model achieves good performance in the recommendation field, but existing graph collaborative filtering learning methods usually do not distinguish the interaction relationship between users and items, which makes it difficult to mine the underlying intentions of user behavior. To address these issues, a decoupling graph contrastive learning recommendation model is proposed. Firstly, users and items are embedded into independent spaces to decouple their intentions. Secondly, during the graph propagation phase, potential semantic neighbors are discovered based on the intention features of users and items. The representation learning of structural and semantic neighbors is decoupled based on intent similarity, generating complete high-level representations for users and items. In the contrastive learning phase, nodes are randomly perturbed to create contrastive views, and contrastive learning tasks are constructed for both structural and semantic aspects. Finally, a multi-task strategy jointly optimizes the supervised task and the contrastive learning task. Experimental results on Yelp2018 and Amazon-Book datasets show that the proposed model outperforms the optimal baseline model NCL. It demonstrates improvements of 7.54% and 5.65% in Recall@20, and 8.57% and 6.28% in NDCG@20 on the two datasets, respectively.

    参考文献
    相似文献
    引证文献
引用本文

杨红伟,曹家晟,刘学军,邢卓雅.融合结构邻居和语义邻居的解耦图对比学习推荐模型.计算机系统应用,2024,33(7):149-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-01
  • 最后修改日期:2024-03-05
  • 录用日期:
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号