基于F范数群组效应和谱聚类的无监督特征选择
作者:

Unsupervised Feature Selection Based on F-norm Group Effect and Spectral Clustering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于谱聚类的无监督特征选择主要涉及相关系数矩阵和聚类指示矩阵, 在以往的研究中, 学者们主要关注于相关系数矩阵, 并为此设计了一系列约束和改进, 但仅关注相关系数矩阵并不能充分学习到数据内在结构. 考虑群组效应, 本文向聚类指示矩阵施加$F$范数, 并结合谱聚类以使相关系数矩阵学习更为准确的聚类指示信息, 通过交替迭代法求解两个矩阵. 不同类型的真实数据集实验表明文中方法的有效性, 此外, 实验表明$F$范数还可以使方法更加鲁棒.

    Abstract:

    Unsupervised feature selection based on spectral clustering mainly involves the correlation coefficient matrix and the clustering indicator matrix. In previous studies, scholars have mainly focused on the correlation coefficient matrix, designing a series of constraints and improvements for it. However, focusing solely on the correlation coefficient matrix cannot fully learn the intrinsic structure of data. Considering the group effect, this study imposes the F-norm on the clustering indicator matrix and combines it with spectral clustering to make the correlation coefficient matrix learn more accurate clustering indicator information. The two matrices are solved through an alternating iteration method. Experiments on different types of real datasets show the effectiveness of the proposed method. In addition, experiments show that the F-norm can also make the method more robust.

    参考文献
    [1] Xu YS, Chen S, Li J, et al. Fast subspace clustering by learning projective block diagonal representation. Pattern Recognition, 2023, 135: 109152.
    [2] Beiranvand F, Mehrdad V, Dowlatshahi MB. Unsupervised feature selection for image classification: A bipartite matching-based principal component analysis approach. Knowledge-based Systems, 2022, 250: 109085.
    [3] Akhtar Z, Lee JW, Attique Khan M, et al. Optical character recognition (OCR) using partial least square (PLS) based feature reduction: An application to artificial intelligence for biometric identification. Journal of Enterprise Information Management, 2023, 36(3): 767–789.
    [4] Bojaraj L, Jaikumar R. Hierarchical clustering fuzzy features subset classifier with ant colony optimization for lung image classification. In: Singhal P, Verma A, Srivastava PK, et al. eds. Image Processing and Intelligent Computing Systems. Boca Raton: CRC Press, 2023. 49–62.
    [5] Li D, Liang HN, Qin P, et al. A self-training subspace clustering algorithm based on adaptive confidence for gene expression data. Frontiers in Genetics, 2023, 14: 1132370.
    [6] Mousavian Anaraki SA, Haeri A, Moslehi F. A hybrid reciprocal model of PCA and K-means with an innovative approach of considering sub-datasets for the improvement of K-means initialization and step-by-step labeling to create clusters with high interpretability. Pattern Analysis and Applications, 2021, 24(3): 1387–1402.
    [7] Zhu PC, Hou X, Tang KK, et al. Unsupervised feature selection through combining graph learning and ?2,0-norm constraint. Information Sciences, 2023, 622: 68–82.
    [8] Turk MA, Pentland AP. Face recognition using eigenfaces. Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Maui: IEEE, 1991. 586–591.
    [9] Luo C, Zheng J, Li TR, et al. Orthogonally constrained matrix factorization for robust unsupervised feature selection with local preserving. Information Sciences, 2022, 586: 662–675.
    [10] Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3: 1157–1182.
    [11] Zhou Y, Zhang WJ, Kang JH, et al. A problem-specific non-dominated sorting genetic algorithm for supervised feature selection. Information Sciences, 2021, 547: 841–859.
    [12] Chen XJ, Chen RJ, Wu QY, et al. Semisupervised feature selection via structured manifold learning. IEEE Transactions on Cybernetics, 2022, 52(7): 5756–5766.
    [13] Cai D, Zhang CY, He XF. Unsupervised feature selection for multi-cluster data. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2010. 333–342.
    [14] Li ZC, Yang Y, Liu J, et al. Unsupervised feature selection using nonnegative spectral analysis. Proceedings of the 26th AAAI Conference on Artificial Intelligence. Toronto: AAAI, 2012. 1026–1032.
    [15] Wang R, Zhang CY, Bian JT, et al. Sparse and flexible projections for unsupervised feature selection. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 6362–6375.
    [16] He XF, Cai D, Niyogi P. Laplacian score for feature selection. Proceedings of the 18th International Conference on Neural Information Processing Systems. Vancouver: MIT Press, 2005. 507–514.
    [17] Bommert A, Welchowski T, Schmid M, et al. Benchmark of filter methods for feature selection in high-dimensional gene expression survival data. Briefings in Bioinformatics, 2022, 23(1): bbab354.
    [18] 孙雅芝, 江峰, 杨志勇. 基于粒度粗糙熵与改进蜂群算法的特征选择. 计算机系统应用, 2023, 32(6): 121–129.
    [19] Fang XZ, Xu Y, Li XL, et al. Locality and similarity preserving embedding for feature selection. Neurocomputing, 2014, 128: 304–315.
    [20] Zhang R, Zhang YX, Li XL. Unsupervised feature selection via adaptive graph learning and constraint. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(3): 1355–1362.
    [21] Luo MN, Nie FP, Chang XJ, et al. Adaptive unsupervised feature selection with structure regularization. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 944–956.
    [22] Zhang H, Zhang R, Nie FP, et al. An efficient framework for unsupervised feature selection. Neurocomputing, 2019, 366: 194–207.
    [23] Lu CY, Min H, Zhao ZQ, et al. Robust and efficient subspace segmentation via least squares regression. Proceedings of the 12th European Conference on Computer Vision. Florence: Springer, 2012. 347–360.
    [24] Hu H, Lin ZC, Feng JJ, et al. Smooth representation clustering. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 3834–3841.
    [25] Wang P, Han B, Li J, et al. Structural reweight sparse subspace clustering. Neural Processing Letters, 2019, 49(3): 965–977.
    [26] Nie FP, Zhu W, Li XL. Structured graph optimization for unsupervised feature selection. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(3): 1210–1222.
    [27] Du XZ, Nie FP, Wang WQ, et al. Exploiting combination effect for unsupervised feature selection by ?2,0 norm. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(1): 201–214.
    [28] Shang RH, Kong JR, Wang LJ, et al. Unsupervised feature selection via discrete spectral clustering and feature weights. Neurocomputing, 2023, 517: 106–117.
    [29] Yang ZG, Wang JK, Li Q, et al. Graph optimization for unsupervised dimensionality reduction with probabilistic neighbors. Applied Intelligence, 2023, 53(2): 2348–2361.
    [30] Nie FP, Wang XQ, Huang H. Clustering and projected clustering with adaptive neighbors. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014. 977–986.
    [31] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Vancouver: MIT Press, 2001. 585–591.
    [32] Zhu PF, Zhu WC, Hu QH, et al. Subspace clustering guided unsupervised feature selection. Pattern Recognition, 2017, 66: 364–374.
    [33] Nie FP, Zhang R, Li XL. A generalized power iteration method for solving quadratic problem on the stiefel manifold. Science China Information Sciences, 2017, 60(11): 112101.
    [34] Lyons MJ, Budynek J, Akamatsu S. Automatic classification of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(12): 1357–1362.
    [35] He XF, Yan SC, Hu YX, et al. Learning a locality preserving subspace for visual recognition. Proceedings of the 9th IEEE International Conference on Computer Vision. Nice: IEEE, 2003. 385–392.
    [36] Nene SA, Nayar SK, Murase H. Columbia object image library (COIL-20). Technical Report, CUCS-006-96, New York: Columbia University, 1996.
    [37] Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 2002, 1(2): 203–209.
    [38] Li JD, Cheng KW, Wang SH, et al. Feature selection: A data perspective. ACM Computing Surveys, 2017, 50(6): 94.
    [39] Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–720.
    [40] Hull JJ. A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5): 550–554.
    [41] Kuhn HW. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 1955, 2(1–2): 83–97.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林清水,田鹏飞,张旺.基于F范数群组效应和谱聚类的无监督特征选择.计算机系统应用,2024,33(7):201-212

复制
分享
文章指标
  • 点击次数:300
  • 下载次数: 733
  • HTML阅读次数: 584
  • 引用次数: 0
历史
  • 收稿日期:2024-01-24
  • 最后修改日期:2024-02-26
  • 在线发布日期: 2024-06-05
文章二维码
您是第11292126位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号