摘要:针对无人机航拍检测任务中小目标检测精度低的问题, 提出一种基于YOLOv8n的目标检测算法(SFE-YOLO). 首先, 嵌入浅层特征增强模块, 将输入特征的浅层空间信息与颈部获取的深层语义信息融合, 以增强小目标特征表示能力, 并使用全局上下文块(GC-Block)对融合信息进行重校准, 抑制背景噪声. 其次, 引入可变形卷积来代替C2F中的部分标准卷积, 提高网络对几何变化的适应性. 再次, 引入ASPPF模块, 融合平均池化技术, 增强模型对多尺度特征的表达并降低漏检率. 最后, 在颈部网络的基础上嵌入中尺度特征合成层, 融合主干网络中更多的中间特征, 使不同尺度的特征过渡更平滑, 并通过跳跃连接增强特征重用性. 该模型在数据集VisDrone2019和VOC2012上进行验证, mAP@0.5值达到30.5%和67.3%, 相较于基线算法YOLOv8n提升了3.6%和0.8%, 能够提升无人机图像目标检测性能, 同时具有较好的泛化性.