摘要:人工神经网络(artificial neural network, ANN)在众多领域取得了显著进展, 但其对计算资源和能耗的高需求限制了其在硬件端的部署和应用. 脉冲神经网络(spiking neural network, SNN)因其低功耗和快速推理的特性, 在神经形态硬件上表现出色. 然而, SNN的神经元动态和脉冲发放机制导致其训练过程复杂, 目前主要研究集中在图像分类任务上, 本文尝试将SNN应用于更为复杂的计算机视觉任务. 本文以YOLOv3-tiny网络为基础, 提出了Spiking YOLOv3模型, 其符合SNN特性的网络模型, 在检测任务上实现了更高的准确度, 并将平均推理时间减少至约原来工作的1/4. 此外, 我们还分析了ANN-SNN转换过程中产生的转换误差, 并采用量化激活函数对Spiking YOLOv3模型进行了优化以减小转换误差. 优化后的模型平均推理时间减少至约原来的1/2, 并在VOC与UAV数据集上实现在ANN-SNN无损转换, 显著提升了基于该模型的检测效率.