摘要:图像分割经历了从基于传统的阈值分割等方法逐步发展到基于卷积神经网络的方法. 传统的卷积神经网络在分割领域中表现突出, 但训练速度慢、分割精度不够高等局限性也逐渐显现. 为了克服这些局限性, 本文在TransUNet网络的基础上进行改进, 提出了基于BM-TransUNet网络的图像分割识别方法, 在TransUNet网络的在第1层之后加上深度可分离卷积模块, 并在编码器下采样的卷积层后引入注意力机制模块, 让算法更好地探索分割对象特征, 同时在编码器与解码器之间引入多尺度特征融合模块FPN. 本文基于自制的咽后壁数据集, 用于图像分割训练, 并将训练后的BM-TransUNet网络与多种传统分割网络的效果进行对比. 实验结果表明, 相比于其他传统的深度学习模型, BM-TransUNet网络的识别方法具有较高的分类准确性和泛化能力, 精确度Precision和Dice系数分别达到了93.61%和90.76%, 显示出较好的计算效率, 能有效地应用于分割任务.