融合注意力和多尺度特征的街景图像语义分割
作者:
基金项目:

辽宁省应用基础研究计划(2023JH2/101300225)


Semantic Segmentation of Street View Image Based on Attention and Multi-scale Features
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决在街道场景图像语义分割任务中传统U-Net网络在多尺度类别下目标分割的准确率较低和图像上下文特征的关联性较差等问题, 提出一种改进U-Net的语义分割网络AS-UNet, 实现对街道场景图像的精确分割. 首先, 在U-Net网络中融入空间通道挤压激励(spatial and channel squeeze & excitation block, scSE)注意力机制模块, 在通道和空间两个维度来引导卷积神经网络关注与分割任务相关的语义类别, 以提取更多有效的语义信息; 其次, 为了获取图像的全局上下文信息, 聚合多尺度特征图来进行特征增强, 将空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)多尺度特征融合模块嵌入到U-Net网络中; 最后, 通过组合使用交叉熵损失函数和Dice损失函数来解决街道场景目标类别不平衡的问题, 进一步提升分割的准确性.实验结果表明, 在街道场景Cityscapes数据集和CamVid数据集上AS-UNet网络模型的平均交并比(mean intersection over union, MIoU)相较于传统U-Net网络分别提高了3.9%和3.0%, 改进的网络模型显著提升了对街道场景图像的分割效果.

    Abstract:

    This study aims to solve the problems faced by traditional U-Net network in the semantic segmentation task of street scene images, such as the low accuracy of object segmentation under multi-scale categories and the poor correlation of image context features. To this end, it proposes an improved U-Net semantic segmentation network AS-UNet to achieve accurate segmentation of street scene images. Firstly, the spatial and channel squeeze & excitation block (scSE) attention mechanism module is integrated into the U-Net network to guide the convolutional neural network to focus on semantic categories related to segmentation tasks in both channel and space dimensions, to extract more effective semantic information. Secondly, to obtain the global context information of the image, the multi-scale feature map is aggregated for feature enhancement, and the atrous spatial pyramid pooling (ASPP) multi-scale feature fusion module is embedded into the U-Net network. Finally, the cross-entropy loss function and Dice loss function are combined to solve the problem of unbalanced target categories in street scenes, and the accuracy of segmentation is further improved. The experimental results show that the mean intersection over union (MIoU) of the AS-UNet network model in the Cityscapes and CamVid datasets increases by 3.9% and 3.0%, respectively, compared with the traditional U-Net network. The improved network model significantly improves the segmentation effect of street scene images.

    参考文献
    [1] 王龙飞, 严春满. 道路场景语义分割综述. 激光与光电子学进展, 2021, 58(12): 1200002.
    [2] Grigorescu S, Trasnea B, Cocias T, et al. A survey of deep learning techniques for autonomous driving. Journal of Field Robotics, 2020, 37(3): 362–386.
    [3] 钮圣虓, 王盛, 杨晶晶, 等. 完全基于边缘信息的快速图像分割算法. 计算机辅助设计与图形学学报, 2012, 24(11): 1410–1419.
    [4] 郑美珠, 赵景秀. 基于区域一致性测度的彩色图像边缘检测. 计算机应用, 2011, 31(9): 2485–2488, 2492.
    [5] 付云凤. 基于阈值的图像分割研究 [硕士学位论文]. 重庆: 重庆大学, 2013.
    [6] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    [7] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495.
    [8] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [9] Zhou ZW, Siddiquee MMR, Tajbakhsh N, et al. U-Net++: A nested U-Net architecture for medical image segmentation. Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis. Granada: Springer, 2018. 3–11.
    [10] Oktay O, Schlemper J, Le Folgoc L, et al. Attention U-Net: Learning where to look for the pancreas. arXiv:1804.03999, 2018.
    [11] Zhao HS, Shi JP, Qi XJ, et al. Pyramid scene parsing network. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6230–6239.
    [12] Chen LC, Zhu YK, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 833–851.
    [13] Chen LC, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848.
    [14] Chen LC, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFS. Computer Science, 2014, (4): 357–361.
    [15] Chen LC, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017.
    [16] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. Proceedings of the 4th International Conference on Learning Representations. San Juan: OpenReview.net, 2016.
    [17] Woo S, Park J, Lee JY, et al. CBAM: Convolutional block attention module. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 3–19.
    [18] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [19] Roy AG, Navab N, Wachinger C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. Proceedings of the 21st International Conference on Medical Image Computing and Computer-assisted Intervention. Granada: Springer, 2018. 421–429.
    [20] Mehta S, Rastegari M, Caspi A, et al. ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 561–580.
    [21] Paszke A, Chaurasia A, Kim S, et al. ENet: A deep neural network architecture for real-time semantic segmentation. arXiv:1606.02147, 2016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

洪军,刘笑楠,刘振宇.融合注意力和多尺度特征的街景图像语义分割.计算机系统应用,2024,33(5):94-102

复制
分享
文章指标
  • 点击次数:528
  • 下载次数: 1486
  • HTML阅读次数: 766
  • 引用次数: 0
历史
  • 收稿日期:2023-12-06
  • 最后修改日期:2024-01-09
  • 在线发布日期: 2024-04-07
文章二维码
您是第11183757位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号