复合主干融合的图像增强算法
作者:
基金项目:

国家自然科学基金(62272426, 62106238); 山西省科技重大专项计划“揭榜挂帅”项目(202201150401021); 山西省科技成果转化引导专项(202104021301055); 山西省基础研究计划(202203021222027)


Image Enhancement Algorithm for Composite Backbone Fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于深度学习的微光图像增强算法所生成的图像普遍存在噪声凸显和细节丢失等问题, 而端对端深度学习算法的性能又在很大程度上依赖于骨干网络的提取能力, 因此, 通过探索更有效的骨干网络结构可以提升微光增强任务的性能收益. 本文提出了一种复合主干网络融合策略的图像增强算法, 将不同图像增强算法中的主干网络进行融合, 以提高整体网络的特征提取能力. 该算法通过逐层融合来自不同主干网络的特征信息, 将复合特征引导到解码器中, 再充分利用不同的上采样方法, 将主干网络融合的特征进行堆叠, 最终生成正常光照条件下的图像. 通过与现有的主流算法进行定量与定性的对比实验, 结果显示, 本文方法显著提升了微光图像的亮度, 同时保留图像的细节特征, 在峰值信噪比和结构相似性客观指标上, 在LOL-V2数据集上达到了24.35 dB和0.871, 有效解决了图像增强后的噪声凸显和细节丢失问题.

    Abstract:

    The images generated by low-light image enhancement algorithms based on deep learning generally have problems such as noise highlighting and detail loss. However, the performance of end-to-end deep learning algorithms largely depends on the extraction ability of the backbone network. Therefore, exploring more effective backbone network structures can improve the performance benefits of low-light enhancement tasks. This study proposes an image enhancement algorithm based on a composite backbone network fusion strategy, which integrates backbone networks from different image enhancement algorithms to improve the overall network’s feature extraction ability. The algorithm integrates feature information from different backbone networks layer by layer and guides composite features into the decoder. It then fully utilizes different upsampling methods to stack the fused features of the backbone network, ultimately generating images under normal lighting conditions. Through quantitative and qualitative comparative experiments with existing mainstream algorithms, the results show that our method significantly improves the brightness of low-light images while preserving the detailed features of the images. In terms of objective indicators such as peak signal-to-noise ratio and structural similarity, it achieves 24.35 dB and 0.871 in the LOL-V2 dataset, effectively solving the problems of noise highlighting and detail loss after image enhancement.

    参考文献
    [1] 王利娟, 常霞, 张君. 基于Retinex的彩色图像增强方法综述. 计算机系统应用, 2020, 29(6): 13–21.
    [2] Wei C, Wang WJ, Yang WH, et al. Deep retinex decomposition for low-light enhancement. Proceedings of the 2018 British Machine Vision Conference. Newcastle: BMVC, 2018.
    [3] Zhang YH, Zhang JW, Guo XJ. Kindling the darkness: A practical low-light image enhancer. Proceedings of the 27th ACM International Conference on Multimedia. Nice: ACM, 2019. 1632–1640.
    [4] Zhang YH, Guo XJ, Ma JY, et al. Beyond brightening low-light images. International Journal of Computer Vision, 2021, 129(4): 1013–1037.
    [5] Guo CL, Li CY, Guo JC, et al. Zero-reference deep curve estimation for low-light image enhancement. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 1777–1786.
    [6] Li CY, Guo CL, Loy CC. Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225–4238.
    [7] Zeng H, Cai JR, Li LD, et al. Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2058–2073.
    [8] Jiang YF, Gong XY, Liu D, et al. EnlightenGAN: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 2021, 30: 2340–2349.
    [9] Wang ZD, Cun XD, Bao JM, et al. Uformer: A general U-shaped Transformer for image restoration. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022. 17662–17672.
    [10] Lim S, Kim W. DSLR: Deep stacked Laplacian restorer for low-light image enhancement. IEEE Transactions on Multimedia, 2021, 23: 4272–4284.
    [11] Chen HT, Wang YH, Guo TY, et al. Pre-trained image processing Transformer. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 12294–12305.
    [12] Kim H, Choi SM, Kim CS, et al. Representative color transform for image enhancement. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. 4439–4448.
    [13] Tu ZZ, Talebi, Zhang H, et al. MAXIM: Multi-axis MLP for image processing. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 5759–5770.
    [14] Li CY, Guo CL, Zhou M, et al. Embedding Fourier for ultra-high-definition low-light image enhancement. Proceedings of the 11th International Conference on Learning Representations. Kigali: ICLR, 2023.
    [15] Cui ZT, Li KC, Gu L, et al. You only need 90k parameters to adapt light: A light weight Transformer for image enhancement and exposure correction. Proceedings of the 33rd British Machine Vision Conference. London: BMVC, 2022. 238.
    [16] Lei T, Sun R, Wang X, et al. CiT-Net: Convolutional neural networks hand in hand with vision Transformers for medical image segmentation. Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Macao: IJCAI, 2023. 1017–1025.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

万嘉龙,况立群,曹亚明,郭磊,熊风光.复合主干融合的图像增强算法.计算机系统应用,2024,33(4):194-201

复制
分享
文章指标
  • 点击次数:381
  • 下载次数: 1064
  • HTML阅读次数: 787
  • 引用次数: 0
历史
  • 收稿日期:2023-10-27
  • 最后修改日期:2023-12-04
  • 在线发布日期: 2024-03-04
文章二维码
您是第11249952位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号