基于模糊模式感知模块的场景文本图像超分辨率算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Scene Text Image Super-resolution Algorithm Based on Blurring Patterns Aware Module
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的场景文本识别器容易受到模糊文本图像的困扰, 导致在实际应用中性能较差. 因此近年来研究人员提出了多种场景文本图像超分辨率模型作为场景文本识别的预处理器, 以提高输入图像的质量. 然而, 用于场景文本图像超分辨率任务的真实世界训练样本很难收集; 此外, 现有的场景文本图像超分辨率模型只学习将低分辨率(LR)文本图像转换为高分辨率(HR)文本图像, 而忽略了从HR到LR图像的模糊模式. 本文提出了模糊模式感知模块, 该模块从现有的真实世界HR-LR文本图像对中学习模糊模式, 并将其转移到其他HR图像中, 以生成具有不同退化程度的LR图像. 本文所提出的模糊模式感知模块可以为场景文本图像超分辨率模型生成大量的HR-LR图像对, 以弥补训练数据的不足, 从而显著提高性能. 实验结果表明, 当配备提出的模糊模式感知模块时, 场景文本图像超分辨率方法的性能可以进一步提高, 例如, SOTA方法TG在使用CRNN文本识别器进行评估时, 识别准确率提高了5.8%.

    Abstract:

    Existing scene text recognizers are prone to be troubled by blurred text images, leading to poor performance in practical applications. Therefore, several scene text image super-resolution models have been proposed as the pre-processor for text recognizers to improve the quality of input images. However, real-world training samples for the scene text image super-resolution task are difficult to collect. In addition, existing STISR models only learn to transform low-resolution (LR) text images into high-resolution (HR) text images while ignoring blurring patterns from HR to LR images. This study proposes a blurring pattern aware module (BPAM), which learns blurring patterns from existing real-world HR-LR pairs and transfers them to other HR images for generating LR images with different degrees of degradation. Therefore, the proposed BPAM can produce massive HR-LR pairs for STISR models to compensate for the deficiency of training data, significantly improving performance. The experimental results show that when equipped with the proposed BPAM, the performance of SOTA STISR methods can be further improved. For instance, the SOTA method TG achieves a 5.8% improvement in recognition accuracy with CRNN for evaluation.

    参考文献
    相似文献
    引证文献
引用本文

张密,余海洋.基于模糊模式感知模块的场景文本图像超分辨率算法.计算机系统应用,2024,33(4):103-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-28
  • 最后修改日期:2023-11-03
  • 录用日期:
  • 在线发布日期: 2024-03-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号