基于多分主干外部注意力网络的水声信号识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省自然科学基金青年创新项目(2021J05202); 福建省发树慈善基金会资助研究专项(MFK23006); 国家自然科学基金(61972187); 福建省卫生健康重大科研专项(2021ZD01004)


Underwater Acoustic Signal Recognition Based on Multi-backbone External Attention Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水声信号识别近年来备受关注, 由于海洋信道具有时变空变性、信号传播的衰落特性和水下目标声源具有复杂多变性, 水声信号识别任务面临巨大挑战. 传统的水声信号识别方法难以充分获取目标的表征信息且不具备良好的抗噪声能力, 识别效果有待提升. 针对上述问题, 本文提出一种基于多分支外部注意力网络(multi-branch external attention network, MEANet)的水声信号识别方法, 可以在复杂海洋环境下充分获取水声信号的特征并进行识别. MEANet由多分支主干网络, 通道、空间注意力模块和外部注意力模块组成. 首先, 输入数据通过多个并行的主干网络分支, 提取水声信号不同层级的特征信息; 其次, 辅以通道、空间注意力模块对水声信号的通道和空间维度分别进行加权, 调节不同通道和空间位置对特征表示的重要性; 最后, 整合外部注意力模块, 以外部记忆单元和附加计算来引导网络的特征提取和预测, 从而显著提高模型的识别率和鲁棒性. 实验结果表明, 本文提出的MEANet在ShipsEar数据集上的水声信号识别率达到98.84%, 显著优于其他对比算法, 证实了其有效性.

    Abstract:

    In recent years, underwater acoustic target recognition has received considerable attention. However, due to the time-varying and space-varying nature of the underwater acoustic channel, as well as the complex and variable characteristics of the underwater target sound sources, water sound signal recognition tasks face significant challenges. Traditional methods for water sound signal recognition struggle to capture sufficient representation information of the targets and lack robustness against noise, resulting in suboptimal recognition performance. To address these issues, this study proposes a water sound signal recognition method based on the multi-branch external attention network (MEANet), which can effectively extract features and perform recognition in complex marine environments. MEANet consists of multiple branches for the backbone network, channel and spatial attention modules, and external attention modules. Firstly, the study feeds the input data through multiple parallel branches of the backbone network to extract features at different levels from the water sound signals. Secondly, it employs the channel and spatial attention modules to weight the channels and spatial dimensions of the water sound signals. Finally, the external attention module integrates external memory units and additional computations to guide feature extraction and prediction, significantly improving the recognition rate and robustness of the model. Experimental results demonstrate that the proposed MEANet achieves a recognition rate of 98.84% on the ShipsEar dataset, outperforming other comparative algorithms.

    参考文献
    相似文献
    引证文献
引用本文

王越,李佐勇,颜佳泉,胡蓉.基于多分主干外部注意力网络的水声信号识别.计算机系统应用,2024,33(4):263-270

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-14
  • 最后修改日期:2023-10-25
  • 录用日期:
  • 在线发布日期: 2024-03-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号