改进的三维人体姿态估计算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62105196)


Improved Algorithm for 3D Human Pose Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前三维人体姿态由于遮挡、姿态复杂等预测不准确的问题, 提出了一种改进的三维人体姿态估计算法以获得准确的三维人体姿态, 提高人体姿态估计性能. 本文采用时空图注意力卷积网络中的图注意力块来构建整个网络, 在此基础上对全局多头图注意力部分的网络结构进行改进, 使节点间更好传播和融合信息, 捕获图中没有显式表示的语义信息. 同时引入运动学约束, 在MPJPE损失的基础上, 加上骨骼长度损失. 通过对局部和全局的空间节点信息建模, 实现对局部运动学连接、对称性和全局姿态的人体骨骼运动学约束的学习. 通过实验证明, 本文改进后的模型有效地提高了人体姿态估计性能, 在Human3.6M数据集上相较于原始模型, 实现了1.8%的平均关节位置误差(MPJPE)提升和1.3%的预测关节与真值关节刚性对齐后的平均关节位置误差(P-MPJPE)提升.

    Abstract:

    Aiming at the current inaccurate predictions in 3D human pose due to factors such as occlusion and complexity of poses, this paper proposes an improved 3D human pose estimation algorithm to obtain accurate 3D human pose and enhance the performance of human pose estimation. Meanwhile, it adopts the graph attention block from the spatio-temporal graph attention convolutional network to construct the entire network. On this basis, the network structure of the global multi-head graph attention part is improved to facilitate better information propagation and fusion among nodes and capture semantic information not explicitly represented in the graph. Kinematic constraints are introduced as well, and a bone length loss is added based on the MPJPE loss. By the modeling of local and global spatial node information, the learning of kinematic constraints of human skeletal movements is achieved, including local kinematic connections, symmetry, and global poses. Empirical results show that the improved model effectively enhances the performance of human pose estimation. Compared to the original model on the Human3.6M dataset, a 1.8% improvement in mean per joint position error (MPJPE) and a 1.3% improvement in the Procrustes aligned MPJPE (P-MPJPE) after rigid alignment of predicted and true joints have been realized.

    参考文献
    相似文献
    引证文献
引用本文

陈荣桂,贾振堂.改进的三维人体姿态估计算法.计算机系统应用,2024,33(4):187-193

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-12
  • 最后修改日期:2023-10-09
  • 录用日期:
  • 在线发布日期: 2024-01-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号