摘要:针对现有的图像修复方法在面对大规模图像缺损和不规则破损区域修复时, 修复结果出现生成结构与原图像语义不符以及纹理细节模糊等问题, 本文提出一种利用生成边缘图的多尺度特征融合图像修复算法——MSFGAN (multi-scale feature network model based on edge condition). 模型采用两阶段网络设计, 使用边缘图作为修复条件对修复结果进行结构约束. 首先, 使用Canny算子提取待修复图像的边缘图进行完整边缘图生成; 然后利用完整的边缘图结合待修复图像进行图像修复. 为了弥补图像修复算法中经常出现的问题, 提出一种融入了注意力机制的多尺度特征融合模块(attention mechanism multi-fusion convolution block, AM block), 实现受损图像的特征提取和特征融合. 在图像修复网络解码器部分引入跳跃链接, 将高级语义提取和底层特征进行融合实现高质量细节纹理修复. 在CelebA和Places2数据集上的测试结果显示, MSFGAN 修复质量上比当前修复方法有一定提升, 其中在20%–30%掩码比例中, SSIM平均提升0.0291, PSNR提升1.535 dB, 使用消融实验验证了当前优化和创新点在图像修复任务中的有效性.