具有鲁棒性的正交约束多视图子空间聚类算法
作者:
基金项目:

广州市重点研发计划(202007040006)


Orthogonal Constrained Multi-view Subspace Clustering Algorithm with Robustness
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过直接处理原始数据的每个视图, 多视图子空间聚类算法通常可以获得潜在的子空间表示矩阵. 然而, 这些方法往往低估了冗余数据的影响, 因此在潜在子空间表示中准确捕捉精确的聚类结果具有挑战性. 此外, 用于产生聚类结果的 K-means 算法很容易忽略子空间内数据的局部结构, 导致结果不稳定. 针对上述问题, 本文提出了一种多视图子空间方法来获取高质量的子空间表示. 具体来说, 首先通过特征分解方法获得鲁棒性表示. 然后, 为多个视图构建一个联合潜在子空间表示. 接下来, 使用谱旋转来获得聚类结果, 并对划分矩阵采用正交约束来重构子空间, 从而提高聚类性能. 最后, 使用迭代优化算法来解决相关的优化问题. 本文在5个基准数据集上进行了实验, 结果表明, 与最近的多视图聚类算法相比, 本文的算法更加有效.

    Abstract:

    By directly processing each view of original data, multi-view subspace clustering algorithms typically obtain potential subspace representation matrices. However, these methods often underestimate the influences of redundant data, making it challenging to accurately capture the accurate clustering results in the potential subspace representation. Furthermore, the K-means algorithm used to produce the clustering results easily neglects the local structure of the data within the subspaces, leading to unstable results. To address the aforementioned problems, this study proposes a multi-view subspace method to acquire high-quality subspace representations. Specifically, the study initially gets a robust representation through a feature decomposition method. Then, it constructs a joint latent subspace representation for multiple views. Next, it uses spectral rotation to obtain clustering results and employs orthogonal constraints on the partition matrix to reconstruct the subspaces, thereby enhancing clustering performance. Finally, an iterative optimization algorithm is applied to solve relevant optimization problems. Experiments are conducted on five benchmark datasets, and the results demonstrate that the proposed algorithm is more effective than recent multi-view clustering algorithms.

    参考文献
    [1] 胡傲然, 陈晓红. 基于多样性与一致性的单步多视图聚类. https://doi.org/10.19678/j.issn.1000-3428.0067660. [2023-09-07].
    [2] 代劲, 胡艳. 混合粒度多视图新闻数据聚类方法. 小型微型计算机系统, 2021, 42(4): 719–724.
    [3] 于晓, 刘慧, 林毓秀, 等. 一致性引导的自适应加权多视图聚类. 计算机研究与发展, 2022, 59(7): 1496–1508.
    [4] Khan A, Maji P. Approximate graph Laplacians for multimodal data clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 798–813.
    [5] Ren ZW, Sun QS. Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 1839–1851.
    [6] Liu XW, Zhou SH, Wang YQ, et al. Optimal neighborhood kernel clustering with multiple kernels. Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017. 2266–2272.
    [7] Wang R, Lu JT, Lu YH, et al. Discrete multiple kernel k-means. Proceedings of the 30th International Joint Conference on Artificial Intelligence. Montreal: IJCAI, 2021. 3111–3117.
    [8] Liu JY, Liu XW, Wang SW, et al. Hierarchical multiple kernel clustering. Proceedings of the 35th AAAI Conference on Artificial Intelligence. AAAI, 2021. 8671–8679.
    [9] Liu J, Liu X, Xiong J, et al. Optimal neighborhood multiple kernel clustering with adaptive local kernels. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(6): 2872–2885.
    [10] Liu JY, Liu XW, Yang YX, et al. Multiview subspace clustering via co-training robust data representation. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(10): 5177–5189.
    [11] Gao HC, Nie FP, Li XL, et al. Multi-view subspace clustering. Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 4238–4246.
    [12] 张华伟, 陆新东, 朱小明, 等. 基于t-SVD的结构保持多视图子空间聚类. 计算机科学, 2022, 49(S2): 210800215.
    [13] Gu ZB, Feng SH, Hu RT, et al. ONION: Joint unsupervised feature selection and robust subspace extraction for graph-based multi-view clustering. ACM Transactions on Knowledge Discovery from Data, 2023, 17(5): 70.
    [14] Zhang P, Liu XW, Xiong J, et al. Consensus one-step multi-view subspace clustering. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4676–4689.
    [15] Wang Y, Wu L, Lin XM, et al. Multiview spectral clustering via structured low-rank matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4833–4843.
    [16] Wu J, Lin Z, Zha H. Essential tensor learning for multi-view spectral clustering. IEEE Transactions on Image Processing, 2019, 28(12): 5910–5922.
    [17] Gu ZB, Feng SH. Individuality meets commonality: A unified graph learning framework for multi-view clustering. ACM Transactions on Knowledge Discovery from Data, 2023, 17(1): 7.
    [18] 贺娜, 马盈仓, 张丹, 等. 基于谱聚类和L2,1范数的多视图聚类算法. 计算机与数字工程, 2021, 49(11): 2335–2341.
    [19] Shi SJ, Nie FP, Wang R, et al. Self-weighting multi-view spectral clustering based on nuclear norm. Pattern Recognition, 2022, 124: 108429.
    [20] 潘振君, 梁成, 张化祥. 基于一致图学习的鲁棒多视图子空间聚类. 计算机应用, 2021, 41(12): 3438–3446.
    [21] Wang Z, Li ZQ, Wang R, et al. Large graph clustering with simultaneous spectral embedding and discretization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4426–4440.
    [22] Wang H, Yang Y, Liu B. GMC: Graph-based multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1116–1129.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘嘉宁,曾静霞.具有鲁棒性的正交约束多视图子空间聚类算法.计算机系统应用,2024,33(4):171-178

复制
分享
文章指标
  • 点击次数:383
  • 下载次数: 1456
  • HTML阅读次数: 605
  • 引用次数: 0
历史
  • 收稿日期:2023-09-14
  • 最后修改日期:2023-10-16
  • 在线发布日期: 2024-01-18
文章二维码
您是第11183388位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号