摘要:通过直接处理原始数据的每个视图, 多视图子空间聚类算法通常可以获得潜在的子空间表示矩阵. 然而, 这些方法往往低估了冗余数据的影响, 因此在潜在子空间表示中准确捕捉精确的聚类结果具有挑战性. 此外, 用于产生聚类结果的 K-means 算法很容易忽略子空间内数据的局部结构, 导致结果不稳定. 针对上述问题, 本文提出了一种多视图子空间方法来获取高质量的子空间表示. 具体来说, 首先通过特征分解方法获得鲁棒性表示. 然后, 为多个视图构建一个联合潜在子空间表示. 接下来, 使用谱旋转来获得聚类结果, 并对划分矩阵采用正交约束来重构子空间, 从而提高聚类性能. 最后, 使用迭代优化算法来解决相关的优化问题. 本文在5个基准数据集上进行了实验, 结果表明, 与最近的多视图聚类算法相比, 本文的算法更加有效.