基于改进麻雀搜索算法的无信号交叉路口车辆调度优化
作者:

Vehicle Scheduling Optimization at Unsignalized Intersection Based on Improved Sparrow Search Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文将无信号交叉路口内部区域离散化为多个路权点, 并将车辆右转弯与行人或非机动车发生碰撞造成交通事故时所占的路权点设为“故障点”, 故障点有一个至多个, 本文研究无信号交叉路口在发生车辆故障时的通行效率问题. 选择麻雀搜索算法提高车辆调度的通行效率, 但是该算法存在前期易陷入局部最优值而后期寻优精度不高等问题, 为解决此问题, 引入自适应学习参数和等级反向学习的改进策略, 提出基于自适应参数和等级反向学习的麻雀算法(ALSSA). 选取13个基准测试函数以及 Wilcoxon秩和检验P值验证ALSSA的有效性, 结果表明, 改进的麻雀搜索算法与其他算法相比, 全局搜索能力、寻优精度等都有较大提升. 最后, 计算双向两车道、双向四车道、双向八车道不同车流量下的最优通行时间.

    Abstract:

    In this study, the internal area of an unsignalized intersection is divided into multiple road right points, and the road right points occupied by the traffic accident caused by the collision between the vehicle and the pedestrian or the non-motor vehicle are set as “failure points”. This work studies the traffic efficiency of the unsignalized intersection when vehicle failure occurs. The sparrow search algorithm (SSA) is selected to improve traffic efficiency, while SSA is easy to fall into local extreme points in the early stage and has low optimization accuracy in the later stage. To this end, the study introduces the improved strategy of adaptive learning parameters and level-based opposition-based learning to enhance the global search ability in the early stage and the deep exploration ability in the later stage. SSA based on adaptive parameters and level-based opposition-based learning (ALSSA) is proposed. A total of 13 benchmark test functions and the Wilcoxon rank-sum test P value are selected for verification separately. Experimental results show that ALSSA has a great improvement in global search capability and convergence compared with other algorithms. Finally, the optimal traffic time under different traffic flows of two-way two lanes, two-way four lanes, and two-way eight lanes is calculated.

    参考文献
    [1] Xue JK, Shen B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering, 2020, 8(1): 22–34.
    [2] Zhang JN, Xia KW, He ZP, et al. Semi-supervised ensemble classifier with improved sparrow search algorithm and its application in pulmonary nodule detection. Mathematical Problems in Engineering, 2021, 2021: 6622935.
    [3] Zhu YL, Yousefi N. Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm. International Journal of Hydrogen Energy, 2021, 46(14): 9541–9552.
    [4] Liu GY, Shu C, Liang ZW, et al. A modified sparrow search algorithm with application in 3D route planning for UAV. Sensors, 2021, 21(4): 1224.
    [5] Li HM, Zhang Y. Study of Transformer fault diagnosis based on sparrow optimization algorithm. Proceedings of the 1st International Conference on Control, Robotics and Intelligent System. Xiamen: ACM, 2020. 63–66.
    [6] 汤安迪, 韩统, 徐登武, 等. 基于混沌麻雀搜索算法的无人机航迹规划方法. 计算机应用, 2021, 41(7): 2128–2136.
    [7] 张伟康, 刘升, 任春慧. 混合策略改进的麻雀搜索算法. 计算机工程与应用, 2021, 57(24): 74–82.
    [8] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法. 北京航空航天大学学报, 2021, 47(8): 1712–1720.
    [9] Yuan JH, Zhao ZW, Liu YP, et al. DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm. IEEE Access, 2021, 9: 16623–16629.
    [10] 王海瑞, 鲜于建川. 改进麻雀搜索算法在分布式电源配置中的应用. 计算机工程与应用, 2021, 57(20): 245–252.
    [11] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法. 计算机科学与探索, 2021, 15(6): 1155–1164.
    [12] 韩统, 汤安迪, 周欢, 等. 基于LASSA算法的多无人机协同航迹规划方法. 系统工程与电子技术, 2022, 44(1): 233–241.
    [13] 贺航, 马小晶, 王宏伟, 等. 基于改进麻雀搜索算法的森林火灾图像多阈值分割. 科学技术与工程, 2021, 21(26): 11263–11270.
    [14] 杨玮, 杨白月, 王晓雅, 等. 低碳环境下冷链物流企业库存-配送优化. 包装工程, 2021, 42(11): 45–52.
    [15] Rahnamayan S, Tizhoosh HR, Salama MMA. Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64–79.
    [16] 苏莹莹, 王升旭. 自适应混合策略麻雀搜索算法. 计算机工程与应用, 2023, 59(9): 75–85.
    [17] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011, 1(1): 3–18.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李金龙,刘伟.基于改进麻雀搜索算法的无信号交叉路口车辆调度优化.计算机系统应用,2024,33(3):233-244

复制
分享
文章指标
  • 点击次数:420
  • 下载次数: 1364
  • HTML阅读次数: 823
  • 引用次数: 0
历史
  • 收稿日期:2023-08-24
  • 最后修改日期:2023-09-26
  • 在线发布日期: 2024-01-17
文章二维码
您是第11372304位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号