摘要:高分辨率遥感图像有丰富的空间特征, 针对遥感土地覆盖方法中模型复杂, 边界模糊和多尺度分割等问题, 提出了一种基于边界与多尺度信息的轻量化语义分割网络. 首先, 使用轻量化的MobileNetV3分类器, 采用深度可分离卷积来减少计算量. 其次, 使用自顶向下和自底向上的特征金字塔结构来进行多尺度分割. 接着, 设计了一个边界增强模块, 为分割任务提供丰富的边界细节信息. 然后, 设计了一个特征融合模块, 融合边界与多尺度语义特征. 最后, 使用交叉熵损失函数和Dice损失函数来处理样本不平衡的问题. 在 WHDLD数据集的平均交并比达到了59.64%, 总体精度达到了87.68%. 在DeepGlobe数据集的平均交并比达到了70.42%, 总体精度达到了88.81%. 实验结果表明, 该模型能快速有效地实现遥感图像土地覆盖分类.