基于CNN跨层融合结构的边缘检测算法
作者:
基金项目:

国家自然科学基金联合重点项目(U21A20466)


Edge Detection Algorithm Based on CNN Cross-layer Fusion Structure
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    传统边缘检测算法难以处理复杂的图像, 而现有基于深度的边缘检测模型, 其检测结果往往存在边缘定位错误和信息丢失等现象. 针对此类问题, 提出一种基于RCF的高精度的边缘检测算法RCF-CLF. 首先, 引入HDC结构设计用于避免因叠加相同膨胀卷积而引起的网格效应; 其次, 设计了一种特征增强结构, 旨在融合多尺度信息、扩大感受野; 然后, 设计了跨层融合结构, 将高层信息和低层信息融合, 用于提取准确的边缘信息; 最后, 引入注意力机制CBAM, 通过聚焦物体边缘区域, 抑制非边缘区域, 从而提高网络对边缘信息的提取能力. 本文在BSDS500和BIPED数据集上评估所提出的方法, 与RCF算法相比, 在BIPED数据集上, 主要指标ODS、OIS和AP分别达到了0.893、0.901和0.945, 提高了近5个百分点, 在BSDS500数据集上, 主要指标也有所提升. 此外, 与其他同类算法相比, 本文算法也具有一定的优势, 可以实现更加准确的边缘定位.

    Abstract:

    Traditional edge detection algorithms are difficult to deal with complex images, and the existing depth-based edge detection models often have edge positioning errors and information loss in the detection results. Aiming at such problems, this study proposes a high-precision edge detection algorithm RCF-CLF based on RCF. First, the HDC structure is introduced to avoid the grid effect caused by superimposing the same dilated convolution. Second, a feature enhancement structure is designed to fuse multi-scale information and expand the receptive field. Then, a cross-layer fusion structure is designed, which integrates high-level and low-level information to extract accurate edge information. Finally, the attention mechanism CBAM is introduced to focus on the edge area of the object and suppress the non-edge area, thereby improving the ability of the network to extract edge information. This study evaluates the proposed method on the BSDS500 and BIPED datasets. Compared with the RCF algorithm, the main indicators ODS, OIS, and AP reached 0.893, 0.901, and 0.945, respectively, with an increase of nearly 5 percentage points on the BIPED dataset. On the BSDS500 dataset, the main indicators have also improved. In addition, compared with other similar algorithms, the proposed algorithm also has certain advantages, which can achieve more accurate edge positioning.

    参考文献
    [1] Al-Amri SS, Kalyankar NV, Khamitkar SD. Image segmentation by using edge detection. International Journal on Computer Science and Engineering, 2010, 2(3): 804–807.
    [2] Rother C, Kolmogorov V, Blake A. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004, 23(3): 309–314.
    [3] Ferrari V, Fevrier L, Jurie F, et al. Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36–51.
    [4] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [5] Hsieh CJ, Huang TK, Hsieh TH, et al. Compressed sensing based CT reconstruction algorithm combined with modified Canny edge detection. Physics in Medicine & Biology, 2018, 63(15): 155011.
    [6] Nikolic M, Tuba E, Tuba M. Edge detection in medical ultrasound images using adjusted Canny edge detection algorithm. Proceedings of the 24th Telecommunications Forum (TELFOR). Belgrade: IEEE, 2016. 1–4.
    [7] Ghandorh H, Boulila W, Masood S, et al. Semantic segmentation and edge detection—Approach to road detection in very high resolution satellite images. Remote Sensing, 2022, 14(3): 613.
    [8] Lu XY, Zhong YF, Zheng Z, et al. Cascaded multi-task road extraction network for road surface, centerline, and edge extraction. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5621414.
    [9] Manzi MSD, Durrheim RJ, Hein KKA, et al. 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics, 2012, 77(5): WC133–WC147.
    [10] Prasad KND, Pham LT, Singh AP. A novel filter “ImpTAHG” for edge detection and a case study from cambay rift basin, India. Pure and Applied Geophysics, 2022, 179(6-7): 2351–2364.
    [11] Rani S, Ghai D, Kumar S. Object detection and recognition using contour based edge detection and fast R-CNN. Multimedia Tools and Applications, 2022, 81(29): 42183–42207.
    [12] Hussain BA, Hathal MS. Developing arabic license plate recognition system using artificial neural network and canny edge detection. Baghdad Science Journal, 2020, 17(3): 0909.
    [13] Gao X, Ram S, Rodríguez JJ. Exploiting bilinear interpolation and predictive particle swarm optimisation for tilt correction of vehicle license plate images. International Journal of Image Mining, 2023, 4(2): 177–192.
    [14] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679–698.
    [15] Li YB, Liu BL. Improved edge detection algorithm for canny operator. Proceedings of the 10th IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing: IEEE, 2022. 1–5.
    [16] Arbeláez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916.
    [17] Dollár P, Zitnick CL. Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8): 1558–1570.
    [18] Xie SN, Tu ZW. Holistically-nested edge detection. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015. 1395–1403.
    [19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
    [20] Liu Y, Cheng MM, Hu XW, et al. Richer convolutional features for edge detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5872–5881.
    [21] Su Z, Liu WZ, Yu ZT, et al. Pixel difference networks for efficient edge detection. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. 5097–5107.
    [22] Wang PQ, Chen PF, Yuan Y, et al. Understanding convolution for semantic segmentation. Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe: IEEE, 2018. 1451–1460.
    [23] Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts. Distill, 2016, 1(10): e3.
    [24] Woo S, Park J, Lee JY, et al. CBAM: Convolutional block attention module. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 3–19.
    [25] Soria X, Riba E, Sappa A. Dense extreme inception network: Towards a robust cnn model for edge detection. Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. 2020. 1912–1921.
    [26] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [27] Wang YP, Zhao X, Li Y, et al. Deep crisp boundaries: From boundaries to higher-level tasks. IEEE Transactions on Image Processing, 2019, 28(3): 1285–1298.
    [28] Elharrouss O, Hmamouche Y, Idrissi AK, et al. Refined edge detection with cascaded and high-resolution convolutional network. Pattern Recognition, 2023, 138: 109361.
    相似文献
    引证文献
引用本文

李金迪,张陶界,周迪斌,刘文浩.基于CNN跨层融合结构的边缘检测算法.计算机系统应用,2024,33(2):207-215

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-17
  • 最后修改日期:2023-09-15
  • 在线发布日期: 2023-12-27
  • 出版日期: 2023-02-05
文章二维码
您是第11249196位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号