经典YOLO系列目标检测算法及其在乳腺癌检测中的应用
作者:
基金项目:

国家自然科学基金(82174528);山东省中医药科技项目(2021M146);山东省研究生教育质量提升计划(SDYKC19147)


Classic YOLO Series Target Detection Algorithms and Their Application in Breast Cancer Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目前乳腺癌已取代肺癌成为年发病率最高的癌症, 基于深度学习的目标检测技术可对乳腺X线、乳腺超声和乳腺核磁共振等非侵入式成像进行自动病变检测, 已成为乳腺癌辅助诊断的首选途径. YOLO (you only look once)系列算法是基于深度学习的目标检测算法, 经典YOLO算法在速度和精准度具有优势, 被广泛应用于计算机视觉各领域, 最新YOLO算法是计算机视觉领域的SOTA (state of the art)模型, 如何利用YOLO系列算法提高乳腺癌检测速度和准确率, 已经成为研究者关注的焦点之一. 基于此, 本文介绍经典YOLO系列算法的原理, 梳理经典YOLO系列算法在乳腺癌图像检测中的应用现状, 并归纳总结现存问题, 同时对YOLO系列算法在乳腺癌检测的进一步应用进行展望.

    Abstract:

    At present, breast cancer, with the highest annual incidence, has replaced lung cancer, and the target detection technology based on deep learning can automatically detect lesions on non-invasive imaging such as mammography X-ray, breast ultrasound, and breast magnetic resonance imaging (MRI), and it has become the preferred way for adjuvant diagnosis of breast cancer. You only look once (YOLO) series algorithms are object detection algorithms based on deep learning, and classical YOLO algorithms have certain advantages in speed and accuracy and are widely used in computer vision fields. The latest YOLO algorithm is the state of the art (SOTA) model in the field of computer vision, and how to use YOLO series algorithms to improve the speed and accuracy of breast cancer detection has become one of the focus of researchers. On this basis, this study introduces the principle of the classical YOLO series algorithms, sorts out the application status of the classical YOLO series algorithms in breast cancer image detection, summarizes the existing problems, and looks forward to the further application of the YOLO series algorithms in breast cancer detection.

    参考文献
    [1] Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chinese Medical Journal, 2021, 134(7): 783–791.
    [2] 刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读. 肿瘤综合治疗电子杂志, 2021, 7(2): 1–13.
    [3] Yin M, Wang F, Zhang YQ, et al. Analysis on incidence and mortality trends and age-period-cohort of breast cancer in Chinese women from 1990 to 2019. International Journal of Environmental Research and Public Health, 2023, 20(1): 826.
    [4] Rakoczy M, McGaughey D, Korenberg MJ, et al. Feature selection in computer-aided breast cancer diagnosis via dynamic contrast-enhanced magnetic resonance images. Journal of Digital Imaging, 2013, 26(2): 198–208.
    [5] 赫捷, 陈万青, 李霓, 等. 中国女性乳腺癌筛查与早诊早治指南(2021, 北京). 中国肿瘤, 2021, 30(3): 161–191.
    [6] Sriram KV, Havaldar RH. Analytical review and study on object detection techniques in the image. International Journal of Modeling, Simulation, and Scientific Computing, 2021, 12(5): 2150031.
    [7] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述. 光学 精密工程, 2020, 28(5): 1152–1164.
    [8] Viola P, Jones M. Robust real-time object detection. International Journal of Computer Vision, 2001, 4(34–47): 4.
    [9] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego: IEEE, 2005. 886–893.
    [10] 吕璐, 程虎, 朱鸿泰, 等. 基于深度学习的目标检测研究与应用综述. 电子与封装, 2022, 22(1): 010307.
    [11] 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述. 计算机工程, 2022, 48(7): 1–12.
    [12] Redmon J, Divvala SK, Girshick RB, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [13] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 6517–6525.
    [14] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning. Lille: ACM, 2015. 448–456.
    [15] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149.
    [16] Al-Masni MA, Al-Antari MA, Park JM, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Computer Methods and Programs in Biomedicine, 2018, 157: 85–94.
    [17] Al-Antari MA, Al-Masni MA, Choi MT, et al. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. International Journal of Medical Informatics, 2018, 117: 44–54.
    [18] Al-Antari MA, Al-Masni MA, Kim TS. Deep learning computer-aided diagnosis for breast lesion in digital mammogram. Deep Learning in Medical Image Analysis: Challenges and Applications. Cham: Springer, 2020. 59–72.
    [19] Baccouche A, Garcia-Zapirain B, Zheng YF, et al. Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques. Computer Methods and Programs in Biomedicine, 2022, 221: 106884.
    [20] 赵立新, 邢润哲, 白银光, 等. 深度学习在目标检测的研究综述. 科学技术与工程, 2021, 21(30): 12787–12795.
    [21] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [22] Veit A, Wilber M, Belongie S. Residual networks behave like ensembles of relatively shallow networks. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM, 2016. 550–558.
    [23] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944.
    [24] 蒋慧琴, 王博霖, 马岭, 等. 一种双视图信息融合的乳腺肿块自动检测算法. 郑州大学学报(理学版), 2020, 52(4): 28–36.
    [25] 徐立芳, 傅智杰, 莫宏伟. 基于改进的YOLOv3算法的乳腺超声肿瘤识别. 智能系统学报, 2021, 16(1): 21–29.
    [26] Baccouche A, Garcia-Zapirain B, Olea CC, et al. Breast lesions detection and classification via YOLO-based fusion models. Computers, Materials & Continua, 2021, 69(1): 1407–1425.
    [27] Aly GH, Marey M, El-Sayed SA, et al. YOLO based breast masses detection and classification in full-field digital mammograms. Computer Methods and Programs in Biomedicine, 2021, 200: 105823.
    [28] 王杉, 胡艺莹, 丰亮, 等. 基于跨路径特征聚合的改进型YOLOv3乳腺肿块识别算法. 激光与光电子学进展, 2022, 59(4): 0410003.
    [29] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [30] Wang CY, Liao HYM, Wu YH, et al. CSPNet: A new backbone that can enhance learning capability of CNN. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020. 1571–1580.
    [31] Liu S, Qi L, Qin HF, et al. Path aggregation network for instance segmentation. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8759–8768.
    [32] Hamed G, Marey M, Amin SE, et al. Automated breast cancer detection and classification in full field digital mammograms using two full and cropped detection paths approach. IEEE Access, 2021, 9: 116898–116913.
    [33] 王杉, 胡艺莹, 詹泽乾, 等. 基于改进YOLOv4的乳腺肿块检测. 制造业自动化, 2023, 45(2): 6–11, 21.
    [34] Kim CM, Hong EJ, Chung K, et al. Health risk detection and classification model using multi-model-based image channel expansion and visual pattern standardization. Applied Sciences, 2021, 11(18): 8621.
    [35] Su YY, Liu Q, Xie WT, et al. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms. Computer Methods and Programs in Biomedicine, 2022, 221: 106903.
    [36] Zhang JX, Tao X, Jiang YH, et al. Application of convolution neural network algorithm based on multicenter ABUS images in breast lesion detection. Frontiers in Oncology, 2022, 12: 938413.
    [37] Solovyev R, Wang WM, Gabruseva T. Weighted boxes fusion: Ensembling boxes from different object detection models. Image and Vision Computing, 2021, 107: 104117.
    [38] Hara K, Kataoka H, Satoh Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6546–6555.
    [39] 李珊珊, 张曦, 刘文, 等. 一种乳腺X线影像肿块征象检测算法. 小型微型计算机系统: 1–8. http://kns.cnki.net/kcms/detail/21.1106.TP.20221018.1339.036.html. (2023-04-22).
    [40] Meng MZ, Zhang M, Shen D, et al. Detection and classification of breast lesions with You Only Look Once version 5. Future Oncology, 2022, 18(39): 4361–4370.
    [41] Ge Z, Liu ST, Wang F, et al. YOLOX: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    [42] Wang CY, Yeh IH, Liao HYM. You only learn one representation: Unified network for multiple tasks. Journal of Information Science and Engineering, 2023, 39(2): 691–709.
    [43] Long X, Deng KP, Wang GZ, et al. PP-YOLO: An effective and efficient implementation of object detector. arXiv:2007.12099, 2020.
    [44] Huang X, Wang XX, Lv WY, et al. PP-YOLOv2: A practical object detector. arXiv:2104.10419, 2021.
    [45] Xu SL, Wang X, Lv WY, et al. PP-YOLOE: An evolved version of YOLO. arXiv:2203.16250, 2022.
    [46] Li CY, Li LL, Jiang HL, et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv:2209.02976, 2022.
    [47] Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023. 7464–7475.
    [48] Ding XH, Zhang XY, Ma NN, et al. RepVGG: Making VGG-style convnets great again. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 13728–13737.
    [49] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression. arXiv:2205.12740, 2022.
    [50] Wang CY, Liao HYM, Yeh IH. Designing network design strategies through gradient path analysis. Journal of Information Science and Engineering, 2023, 39(3): 975–995.
    [51] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017. 6000–6010.
    [52] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展. 计算机工程与应用, 2023, 59(14): 15–29.
    [53] 陈智丽, 高皓, 潘以轩, 等. 乳腺X线图像计算机辅助诊断技术综述. 计算机工程与应用, 2022, 58(4): 1–21.
    [54] 张素素. 网页版乳腺癌计算机辅助诊断系统研究[硕士学位论文]. 南宁: 广西大学, 2022.
    引证文献
引用本文

孙歆,王晓燕,刘静,黄贺瑄.经典YOLO系列目标检测算法及其在乳腺癌检测中的应用.计算机系统应用,2023,32(12):52-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-18
  • 最后修改日期:2023-07-19
  • 在线发布日期: 2023-10-25
文章二维码
您是第11371949位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号