离散灰狼优化算法求解VRPSPDTW问题
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFC1405703)


Discrete Grey Wolf Optimization Algorithm for VRPSPDTW Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对带时间窗约束的同时送取货车辆路径问题, 建立了以总配送距离最小化为目标的数学模型. 根据模型的特征, 在保留灰狼算法(GWO)搜索机制的基础上, 提出了离散灰狼优化算法(DGWO)进行求解. 采用多种策略构建种群的初始解, 并允许出现不可行解, 扩大种群的搜索区域; 引入带评分策略的邻域搜索策略, 调整每种算子的概率, 使算法选择优化效果更好的算子; 使用移除-插入机制, 对优质解区域进行探索, 加速种群的收敛. 在仿真实验中对标准数据集进行了测试, 将实验结果和p-SA算法、DCS算法、VNS-BSTS算法和SA-ALNS算法进行了对比, 实验表明DGWO算法能有效地解决带时间窗约束的同时送取货车辆路径问题.

    Abstract:

    In this study, a mathematical model aiming at minimizing the total distribution distance is established for the vehicle routing problem of simultaneous delivery and pickup with time window constraints. According to the characteristics of the model, a discrete grey wolf optimization (DGWO) algorithm is proposed to solve the problem on the basis of preserving the search mechanism of the grey wolf optimization (GWO) algorithm. Multiple strategies are adopted to construct the initial solution of the population, and the unfeasible solution is allowed to expand the search area of the population; the neighborhood search strategy with scoring strategy is introduced to adjust the probability of each operator so that the algorithm can select the operator with better optimization effect; the deletion-insertion mechanism is used to explore the high-quality solution region and accelerate the convergence of the population. The standard data set is tested in the simulation experiment, and the experimental results are compared with the p-SA algorithm, DCS algorithm, VNS-BSTS algorithm, and SA-ALNS algorithm. The experiment shows that the DGWO algorithm can effectively solve the vehicle routing problem of simultaneous delivery and pickup with time window constraints.

    参考文献
    相似文献
    引证文献
引用本文

陈凯,邓志良,龚毅光.离散灰狼优化算法求解VRPSPDTW问题.计算机系统应用,2023,32(11):83-94

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-09
  • 最后修改日期:2023-06-06
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号