秃鹰搜索算法的优化及图像分类应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62073091); 广东省普通高校重点领域(新一代信息技术)专项(2020ZDZX3042)


Optimization of Bald Eagle Search Algorithm and Its Application in Image Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对秃鹰搜索算法(BES)存在求解的稳定性差且准确性低, 鲁棒性差等缺点, 提出了一种基于秃鹰搜索算法的新型算法(NBES). 首先, 在BES算法的选择搜索空间阶段融合正余弦优化机制算法, 构建融合后的位置更新公式. 其次, 在BES算法的搜索空间猎物阶段加入惯性权重自适应位置更新策略. 最后, 在BES算法俯冲阶段融合萤火虫优化机制算法, 重新定义位置更新公式. 通过11个标准测试函数验证NBES算法性能, 实验表明, NBES算法寻优准确性、收敛速度、鲁棒性都优于BES算法. 为了验证新算法的实际应用价值, 利用NBES算法优化卷积神经网络(CNN)中的超参数学习率, 并将优化后的图像分类模型用于医学影像病理性分类预测, 实验表明, 经过优化的CNN模型分类精度提高9%.

    Abstract:

    A new algorithm based on the bald eagle search algorithm (NBES) is proposed to address the drawbacks of poor stability and low accuracy of the solution and poor robustness of the bald eagle search (BES) algorithm. First, the sine cosine optimization mechanism algorithm is fused in the search space selection stage of the BES algorithm, and the fused position update formula is constructed. Secondly, the inertial weight adaptive position update strategy is added in the search space prey phase of the BES algorithm. Finally, the position update formula is redefined by fusing the firefly optimization mechanism algorithm in the swoop phase of the BES algorithm. The performance of the NBES algorithm is verified by 11 standard test functions, and the experiments show that the NBES algorithm outperforms the BES algorithm in terms of search accuracy, convergence speed, and robustness. To verify the practical application value of the new algorithm, the hyperparameter learning rate in the convolutional neural network (CNN) is optimized by using the NBES algorithm, and the optimized image classification model is used in medical image pathology classification prediction, and the experiments show that the classification accuracy of the optimized CNN model is improved by 9%.

    参考文献
    相似文献
    引证文献
引用本文

刘世杰,刘美,孟亚男,杨涛.秃鹰搜索算法的优化及图像分类应用.计算机系统应用,2023,32(11):182-192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-24
  • 最后修改日期:2023-05-23
  • 录用日期:
  • 在线发布日期: 2023-09-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号