基于MCA-YOLOv5s的轻量化地铁站内行人检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(U21B2003); 江苏省产业前瞻与关键核心技术竞争项目(BE2022075)


Lightweight Subway Pedestrian Detection Based on MCA-YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着智慧车站和云计算的迅速发展, 地铁站内大规模视频监控系统行人检测的部署愈发重要, 在客流监测、乘客引导和行为警示等方面发挥着人力不能及的重要作用. 在实际工程应用中, 受到计算资源有限以及多尺度多角度遮挡的困难样本带来错漏检的不利影响, 为此提出一种轻量化行人检测算法MCA-YOLOv5s. 首先使用MobileNetv3代替YOLOv5主干网络, 实现网络模型轻量化处理, 并用PConv代替MobileNetv3网络中的DWConv, 减少冗余计算和内存访问; 其次在特征融合阶段的C3模块中融入坐标注意力机制, 使模型更加关注行人的位置信息; 同时将损失函数CIoU替换为Alpha IoU以增加High Loss目标的权重和边界框的回归精度; 最后通过FPGM剪枝压缩改进后的网络模型, 提升模型加载和运行速度. 将改进后的模型部署在华为Atlas 300 AI加速卡中, 对地铁站内行人进行检测, 其平均精度达到94.1%, 检测速度为104.1 fps. 实际工程实践表明, 改进后的算法检测速度提升71.8%, 节省了站内硬件部署资源, 更满足地铁大客流下的行人监测和管理的工程实际需求.

    Abstract:

    With the rapid development of smart stations and cloud computing, the deployment of large-scale video surveillance systems for pedestrian detection in subway stations is becoming more and more important, which plays an important role in passenger flow monitoring, passenger guidance, and behavior warning. In practical engineering applications, a lightweight pedestrian detection algorithm MCA-YOLOv5s is proposed due to the adverse effects of limited computing resources and difficult samples caused by multi-scale and multi-angle occlusion. Firstly, MobileNetv3 replaces the YOLOv5 backbone network to achieve lightweight network model processing, and PConv replaces DWConv in the MobileNetv3 network to reduce redundant computation and memory access. Secondly, the coordinate attention mechanism is incorporated in the C3 module of the feature fusion stage to make the model pay more attention to pedestrian position information. At the same time, the loss function CIoU is replaced by Alpha IoU to increase the weight of the High Loss target and the regression accuracy of the bounding box. Finally, the improved network model is compressed by FPGM pruning to improve the loading and running speed of the model. The improved model is deployed in Huawei Atlas 300 AI accelerator to detect pedestrians in subway stations. The average accuracy is 94.1%, and the detection speed is 104.1 fps. The actual engineering practice shows that the detection speed of the improved algorithm is increased by 71.8%, saving the hardware deployment resources in the station and meeting the actual engineering needs of pedestrian monitoring and management in subway stations with large passenger flow.

    参考文献
    相似文献
    引证文献
引用本文

孙同庆,刘光杰,唐喆,李佑文.基于MCA-YOLOv5s的轻量化地铁站内行人检测.计算机系统应用,2023,32(11):120-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-18
  • 最后修改日期:2023-05-17
  • 录用日期:
  • 在线发布日期: 2023-08-09
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号