基于MCNN-BiGRU-Attention的轴承故障诊断
作者:

Bearing Fault Diagnosis Based on MCNN-BiGRU-Attention
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统的故障诊断方法在对轴承故障进行判定时, 存在特征提取不充分, 时序特性运用不完全且计算较为复杂的问题. 对于此问题, 本文提出一种基于多尺度卷积神经网络(multi-scale convolutional neural network, MCNN)、双向门控循环单元(bidirectional gated recurrent unit, BiGRU)和注意力机制(attention)的组合诊断方法. 该方法首先使用MCNN对信号数据进行多尺度特征提取, 在空间层面上, 实现了对特征的进一步提炼. 其次使用了BiGRU网络, 在时间层面上, 从正反两个方向获取时序关系. 接下来引入注意力机制, 忽略一些与结果不相关的信息并且降低信息丢失的风险以提高精度, 在经过全连接层创建映射后, 最后通过Softmax分类方法完成轴承故障诊断. 本文通过实验, 与LSTM模型、GRU模型、SVM模型、CNN-BiGRU等模型进行对比, 实验结果表明, 本文提出的模型相比以往提出的模型准确率更高, 单一工况下的故障诊断准确率达到了98.1%, 多工况条件下平均准确率达到了97.8%.

    Abstract:

    When the traditional fault diagnosis method is used to judge the bearing fault, there are some problems such as insufficient feature extraction, incomplete use of time sequence characteristics, and complicated calculation. In order to solve these problems, a combined diagnosis method based on a multi-scale convolutional neural network (MCNN), bidirectional gated recurrent unit (BiGRU), and attention mechanism is proposed in this study. Firstly, MCNN is used to extract multi-scale features from signal data, which realizes further extraction of features in terms of spatial level. Secondly, the BiGRU network is used to obtain sequential relations from positive and negative directions in terms of time level. Next, an attention mechanism is introduced to ignore some information that is not relevant to the results and reduce the risk of information loss to improve accuracy. After mapping is created through the full connection layer, the bearing fault diagnosis is finally completed through the Softmax classification method. In this study, LSTM model, GRU model, SVM model, CNN-BiGRU model, and other models are compared through experiments, and the experimental results show that the proposed model has higher accuracy than the previous models. The accuracy of fault diagnosis in a single working condition reaches 98.1%, and the average accuracy of fault diagnosis in multiple working conditions reaches 97.8%.

    参考文献
    [1] Zhang X, Wan ST, He YL, et al. Bearing fault diagnosis based on iterative 1.5-dimensional spectral kurtosis. IEEE Access, 2020, 8: 174233–174243
    [2] 王旭峰. 基于倒频谱分析法的滚动轴承故障诊断研究[硕士学位论文]. 昆明: 昆明理工大学, 2010.
    [3] Li D. Research of fault diagnosis of mine rolling bearing based on time-frequency analysis. Journal of Physics: Conference Series, 2023, 2459(1): 012081. [doi: 10.1088/1742-6596/2459/1/012081
    [4] He C, Wu T, Gu RW, et al. Bearing fault diagnosis based on wavelet packet energy spectrum and SVM. Journal of Physics: Conference Series, 2020, 1684(1): 012135. [doi: 10.1088/1742-6596/1684/1/012135
    [5] 谢小正, 王晋, 赵荣珍, 等. 基于小波包能量熵和GWO-SVM的滚动轴承故障诊断. 兰州理工大学学报, 2022, 48(5): 59–64
    [6] 刘颖, 陶建峰, 黄武涛, 等. 小波包能量与CNN相结合的滚动轴承故障诊断方法. 机械设计与制造, 2021, (11): 127–131. [doi: 10.3969/j.issn.1001-3997.2021.11.029
    [7] 陈宇航, 李正平, 肖雷. 基于FFT-1D-CNN的细纱机罗拉轴承故障诊断. 棉纺织技术, 2023, 51(1): 16–21. [doi: 10.3969/j.issn.1001-7415.2023.01.004
    [8] 庄夏. 基于DWT和RNN的无刷直流电动机轴承故障检测方法. 微特电机, 2017, 45(6): 17–21, 26. [doi: 10.3969/j.issn.1004-7018.2017.06.005
    [9] 唐赛, 何荇兮, 张家悦, 等. 基于长短期记忆网络的轴承故障识别. 汽车工程学报, 2018, 8(4): 297–303. [doi: 10.3969/j.issn.2095-1469.2018.04.09
    [10] 张伟, 张广帅, 王连彪. 基于CNN-GRU网络的轴承故障检测算法. 工业仪表与自动化装置, 2021, (6): 88–91. [doi: 10.3969/j.issn.1000-0682.2021.06.019
    [11] Lei DX, Liu HJ, Le HJ, et al. Ionospheric TEC prediction base on attentional BiGRU. Atmosphere, 2022, 13(7): 1039. [doi: 10.3390/atmos13071039
    [12] 石静雯, 侯立群. 基于双向门控循环单元网络的滚动轴承故障诊断. 电力科学与工程, 2021, 37(10): 64–70. [doi: 10.3969/j.ISSN.1672-0792.2021.10.008
    [13] 蒋小平, 刘俊威, 王乐乐, 等. 基于多尺度卷积神经网络和LBP算法的浮选工况识别. 矿业科学学报, 2023, 8(2): 202–212. [doi: 10.19606/j.cnki.jmst.2023.02.007
    [14] 聂良鹏, 权丽君, 吴庭芳, 等. BMBQA: 融合MCNN和BiGRU的蛋白质模型质量评估算法. 小型微型计算机系统, 2022, 43(7): 1419–1425. [doi: 10.20009/j.cnki.21-1106/TP.2020-1083
    [15] 安文杰, 陈长征, 田淼, 等. 基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究. 机电工程, 2022, 39(8): 1096–1103. [doi: 10.3969/j.issn.1001-4551.2022.08.010
    [16] 李辰, 李建勋. 卷积神经网络的正交性特征提取方法及其应用. 上海交通大学学报, 2021, 55(10): 1320–1329. [doi: 10.16183/j.cnki.jsjtu.2020.276
    [17] Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014.
    [18] 石磊, 王毅, 成颖, 等. 自然语言处理中的注意力机制研究综述. 数据分析与知识发现, 2020, 4(5): 1–14
    [19] Lee H, Cho S. Locally adaptive channel attention-based network for denoising images. IEEE Access, 2020, 8: 34686–34695. [doi: 10.1109/ACCESS.2020.2974001
    [20] Shi NW, Wang HZ, Cheng YQ. AT-CRF: A chinese reading comprehension algorithm based on attention mechanism and conditional random fields. Applied Sciences, 2022, 12(20): 10459. [doi: 10.3390/app122010459
    [21] Smith WA, Randall RB. Rolling element bearing diagnostics using the case Western Reserve University data: A benchmark study. Mechanical Systems and Signal Processing, 2015, 64–65: 100–131
    [22] 刘洋. 基于卷积神经网络的风电机组滚动轴承故障诊断研究[硕士学位论文]. 南京: 东南大学, 2021.
    [23] 汪丁, 黄葵, 朱兴动, 等. 基于MCNN-GRU的舰面目标碰撞预警方法. 兵工自动化, 2022, 41(8): 52–57, 80
    [24] 张玺君, 尚继洋, 余光杰, 等. 基于注意力的多尺度卷积神经网络轴承故障诊断. 吉林大学学报(工学版). http://kns.cnki.net/kcms/detail/22.1341.T.20230407.1503.006.html. [2023-04-11].
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈悦然,牟莉.基于MCNN-BiGRU-Attention的轴承故障诊断.计算机系统应用,2023,32(9):125-131

复制
分享
文章指标
  • 点击次数:747
  • 下载次数: 1892
  • HTML阅读次数: 1019
  • 引用次数: 0
历史
  • 收稿日期:2023-03-10
  • 最后修改日期:2023-04-10
  • 在线发布日期: 2023-07-21
文章二维码
您是第11460142位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号