改进BiSeNetV1实时模型的岩屑图像识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62071315)


Recognition of Cuttings Images Based on Improved BiSeNetV1 Real-time Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在图像分割识别领域, 现有的深度学习方法大多使用高精度语义分割方法来实现, 存在着网络推理速度慢、计算量大、难以实际应用等问题. 借助于表现较好的BiSeNetV1实时网络模型, 通过扩展的空间路径卷积结构、空间金字塔注意力机制(SPARM)和简化的注意力特征融合模块(S-iAFF)等改进策略, 设计一种用于岩屑图像分割领域的BiSeNet_SPARM_S-iAFF实时网络. 扩展的空间路径卷积结构可以获取更丰富的岩屑图像空间特征, 上下文路径使用优化的空间金字塔注意力机制(SPARM)进一步细化高层语义特征提取, 在特征融合阶段使用简化注意力特征融合(S-iAFF)加强低层空间与高层语义特征的融合程度. 实验结果表明, BiSeNet_SPARM_S-iAFF网络在RockCuttings_Oil岩屑数据集上的平均交并比(mIoU)为64.91%, 相较于BiSeNetV1网络提高了2.68%; 另外改进后的网络在精度上接近大部分高精度语义分割方法, 同时参数量大幅度减少、推理速度有着明显的提升.

    Abstract:

    In the field of image segmentation and identification, the existing deep learning methods mostly perform tasks by high-precision semantic segmentation methods, which lead to a slow network inference speed, large amount of calculation, and difficult actual application. A real-time network model with better performance, namely BiSeNetV1 is used, and the extended spatial path convolution structure, spatial pyramid attention mechanism (SPARM), simplified iterative attention feature fusion (S-iAFF) module, and other optimization strategies are applied. As a result, a real-time BiSeNet_SPARM_S-iAFF network is designed for rock debris image segmentation. The extended spatial path convolution structure can obtain more abundant spatial features of rock debris images. The context path uses the optimized SPARM to further refine high-level semantic feature extraction. Finally, S-iAFF is used to enhance the fusion degree between low-level spatial and high-level semantic features in the feature fusion stage. The experimental results indicate that the mean intersection over union (mIoU) of the BiSeNet_SPARM_S-iAFF network on the RockCuttings_Oil dataset is 64.91%, which is 2.68% higher than that of the BiSeNetV1 network, and the precision of the improved network is close to that of the most high-precision semantic segmentation methods, while the number of parameters is greatly reduced, and the inference speed is significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

孙杰,滕奇志,罗崇兴,何海波,何小海.改进BiSeNetV1实时模型的岩屑图像识别.计算机系统应用,2023,32(10):45-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-13
  • 最后修改日期:2023-04-20
  • 录用日期:
  • 在线发布日期: 2023-07-21
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号