基于改进ShuffleNetV2模型的光伏板灰尘识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省创新能力支撑计划(2020PT-023); 陕西省重点产业创新链(群)-工业领域项目(2020ZDLGY04-04)


Identification of Dust on Photovoltaic Panel Based on Improved ShuffleNetV2 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鉴于灰尘积聚是光伏组件功率损失的主要因素之一, 针对灰尘颗粒的特性及克服利用扫描电子显微镜成本昂贵问题, 提出了一种利用改进的ShuffleNetV2模型来识别光伏板上的灰尘. 以ShuffleNetV2网络模型为基础模型, 采用Mish激活函数, 将更好的特征信息深入神经网络; 然后运用混合深度卷积保证特征提取的丰富性; 最后利用坐标注意力机制模块替换ShuffleNetV2模型中基本单元右分支尾部的逐点卷积, 从而在提高精度的同时也减少了计算量. 实验结果表明, 所提改进的ShuffleNetV2模型与已有的经典模型相比, 准确度更高, 模型复杂度更低, 有效地证明了所给方案是可行的.

    Abstract:

    Dust accumulation is one of the main factors of power loss of photovoltaic modules. In view of the characteristics of dust particles and the high cost of using scanning electron microscopy, this study proposes a scheme to identify dust on photovoltaic panels by using the improved ShuffleNetV2 model. On the basis of the ShuffleNetV2 network model, the Mish activation function is used to integrate the better feature information into the neural network; then the mixed depth convolution is used to ensure the richness of feature extraction. Finally, the coordinate attention mechanism module is used to replace the point-by-point convolution of the tail of the right branch of the basic unit in the ShuffleNetV2 model, so as to improve the accuracy and reduce the calculation amount. The experimental results show that the improved ShuffleNetV2 model has higher accuracy and lower complexity than the existing classical model, which effectively proves that the proposed scheme is feasible.

    参考文献
    相似文献
    引证文献
引用本文

徐小平,张勇,刘广钧,刘龙.基于改进ShuffleNetV2模型的光伏板灰尘识别.计算机系统应用,2023,32(8):295-302

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-21
  • 最后修改日期:2023-02-13
  • 录用日期:
  • 在线发布日期: 2023-06-09
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号