摘要:针对当前应用深度学习实现数字信号调制识别过程中网络复杂、计算量高、硬件平台要求高的问题, 本文提出了在改进的MobileNetV3轻量级神经网络中使用信号星座图调制识别的方法. 首先, 将接收到的MPSK和MQAM信号转换成星座图像, 将其进行灰度图像提取, 灰度图像增强, 构建星座图的图像数据集, 然后将ResNet中的跨层结构引入MobileNetV3网络, 解决了随着网络层数的增加, 权重减小而导致的梯度消失现象. 最后将星座图数据集用于训练MobileNetV3的轻量型神经网络权重, 对星座图像进行识别. MobileNetV3基于深度卷积可分离和神经架构搜索(network architecture search, NAS)技术在保证识别精度的前提下, 大大降低了参数量和训练时间, 将对于简单信号的调制识别, 轻量型神经网络可以有效简化网络结构, 降低对硬件设备的要求. 仿真结果表明, 针对的调制信号(BPSK、QPSK、8PSK、16QAM、64QAM), 能实现识别率为99.76%的调制识别, 相较于传统应用深度学习实现调制识别的网络, 网络参数量和计算量明显减小.