改进YOLOv3遥感小目标检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Improved YOLOv3 Algorithm for Remote Sensing Detection of Small Targets
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前在遥感目标检测领域广泛使用的YOLOv3算法存在对小目标物体的特征表达能力不足, 检测效果不好的问题, 本文提出一种改进的YOLOv3小目标检测算法. 首先, 引入全局信息注意力机制并改进特征提取网络和特征金字塔结构, 提高模型小目标特征提取能力和检测能力; 其次, 对数据集进行单尺度Retinex融合特征增强, 提高模型对小目标特征的学习效果; 最后, 使用自适应锚框优化算法对anchors进行优化, 提高anchors和目标的匹配程度. 选用遥感数据集RSOD进行实验, 本文算法的全类平均精度为92.5%, 相比经典YOLOv3算法, 提高10.1%, 对遥感小目标的检测效果得到明显提升.

    Abstract:

    As YOLOv3, an algorithm widely used in the field of remote sensing target detection, has insufficient feature expression ability for small targets and a poor detection effect, an improved YOLOv3 algorithm for small target detection is proposed. Firstly, the global context (GC) attention mechanism is introduced, and the feature extraction network and feature pyramid networks (FPN) are improved to enhance the small-target feature extraction ability and detection ability of the model. Secondly, single-scale Retinex (SSR) fusion feature enhancement is applied to the dataset to improve the model’s learning effect of small target features. Finally, the adaptive anchor box optimization (AABO) algorithm is adopted to optimize anchors and better match anchors and targets. The experimental results on the remote sensing dataset RSOD show that the mean average precision (mAP) of the proposed algorithm is 92.5%, which is improved by 10.1% compared with that of the classic YOLOv3 algorithm, and the detection effect of small remote sensing targets is significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

许成林,黄宇博,赵舵.改进YOLOv3遥感小目标检测算法.计算机系统应用,2023,32(7):179-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-05
  • 最后修改日期:2023-02-03
  • 录用日期:
  • 在线发布日期: 2023-04-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号