摘要:在斯隆数字巡天任务中, 受体积较大亮度较高的天体干扰, 现阶段的目标检测算法对小尺度天体的检测效果并不理想. 针对上述问题, 提出一种基于Mask-GAN和YOLOv3的小尺度天体检测方法. 方法分为两大步骤: 第1步干扰天体屏蔽. 首先设计了一个干扰天体Mask构建算法, 通过自适应阈值分割和连通域分析提取干扰目标, 并提出融合各波段区域特征和排除邻近目标方式构建Mask, 避免以往分割方法存在的光晕残留和邻近目标错误分割现象; 其次构建GAN模型, 结合干扰天体Mask完成屏蔽干扰任务. 第2步将处理过的数据输入改进的YOLOv3模型进行小尺度天体检测. 引入注意力机制, 构建C-EfficientNet作为主干特征提取网络, 加强网络的特征提取能力和对目标关注程度; 同时扩展4个有效特征层并提出一种提升浅层特征图权重的方式SAt, 让网络更好地利用分辨率高细节丰富的浅层特征来检测小尺度天体. 实验与分析表明, 在SDSS (Sloan digital sky survey)天文数据集上对小尺度恒星和星系的检测平均精度达到了81.16%和77.89%, 相比于当前经典算法检测效果更好, 有一定的实际应用意义.