基于YOLOv5的靠船排场景下安全措施检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Detection of Safety Measures in Berthing Row Scenario Based on YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    跳板在海上平台作业现场扮演着重要角色. 未搭设跳板对作业现场造成了极大的安全隐患. 为消除此隐患, 提出一种靠船排场景下的跳板搭设检测方法. 本方法分为3个部分: 首先利用目标检测算法定位并标注目标; 之后对标注目标区域进行边缘检测, 提取其外接边缘; 最终制定特定安全措施判别算法识别作业现场违规动作. 本方法为解决小目标等检测问题, 对YOLOv5进行改进, 在特征提取以及特征融合时引入注意力模块, 将均值平均精度由53.1%提高至54.5%的同时模型更加轻量化; 为解决检测边缘粗犷问题, 对边缘检测网络PiDiNet损失函数进行改进, 相较于原网络, 误检率由8.9%下降至5.4%. 经过验证, 利用该方法可以在有效时间内, 检测出跳板是否正确搭设, 准确率为91.5%.

    Abstract:

    Ramps are crucial to offshore platforms, and their absence will cause great safety risks to operation sites. To eliminate such risks, this study proposes a detection method of ramp setting up in the berthing row scenario. The method is divided into three parts: firstly, using the object detection algorithm to locate and mark the target; then, extracting the external edge of the marked target area by edge detection; finally, formulating the specific safety measures discrimination algorithm to identify violations in the work site. To solve the detection problems of small targets, this method improves the YOLOv5 and introduces an attention module in feature extraction and feature fusion, which makes the model more lightweight while improving its mean average precision (mAP) from 53.1% to 54.5%. As to rough edge detection, the loss function of the edge detection network PiDiNet is improved. Compared with the original network, the false detection rate decreases from 8.9% to 5.4%. The verification results indicate that the method can be used to detect whether the ramp is set up correctly within the effective time with accuracy up to 91.5%.

    参考文献
    相似文献
    引证文献
引用本文

崔剑勇,宫法明,袁向兵.基于YOLOv5的靠船排场景下安全措施检测.计算机系统应用,2023,32(6):51-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-30
  • 最后修改日期:2022-12-23
  • 录用日期:
  • 在线发布日期: 2023-04-20
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号