多策略融合的麻雀搜索算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

宁波市自然科学基金(2021J135)


Sparrow Search Algorithm with Multiple Strategies Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对麻雀搜索算法容易因初始种群的多样性不足, 导致算法的搜索能力下降; 以及在搜索后期, 算法容易陷入到局部最优的问题, 提出一种多策略融合的麻雀搜索算法(multi-strategy fusion sparrow search algorithm, ISSA). 在算法初始化阶段, 引入高维Sine混沌映射来初始化种群, 提高初始种群的质量, 增强种群多样性; 其次, 引入衰减因子, 作用在发现者阶段, 衰减因子的自适应性, 平衡了前期全局搜索和后期局部寻优的性能; 最后引入柯西变异和变化选择策略, 让搜索个体可以跳出局部限制继续搜索, 增强局部搜索能力. 随机抽取6个benchmark测试函数, 实验结果验证了ISSA在寻找最优值等方面相比原算法得到了有效的提升.

    Abstract:

    The search ability of the sparrow search algorithm is easy to decline due to insufficient diversity of the initialization population, and the algorithm is easy to fall into local optimal in the late search period. In view of these problems, a multi-strategy fusion sparrow search algorithm (ISSA) is proposed. Specifically, the high-dimensional Sine chaotic mapping is introduced to initialize the population in the algorithm’s initialization stage, so as to improve the quality of the initial population and enhance the diversity of the population. Then, the attenuation factor is introduced in the discoverer stage, and the adaptability of the attenuation factor balances the performance of the early global search and the later local optimization. Finally, the Cauchy mutation and change selection strategy are introduced so that the searching individual can jump out of the local limit to continue the search and enhance the local search ability. Six benchmark test functions are randomly selected, and the experimental results verify that ISSA has been effectively improved compared with the original algorithm in terms of finding the optimal value.

    参考文献
    相似文献
    引证文献
引用本文

王辉,童楠,符强.多策略融合的麻雀搜索算法.计算机系统应用,2023,32(6):159-165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-07
  • 最后修改日期:2022-11-30
  • 录用日期:
  • 在线发布日期: 2023-04-20
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号