基于粒度粗糙熵与改进蜂群算法的特征选择
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61973180, 61671261); 山东省自然科学基金(ZR2022MF326)


Feature Selection Based on Granularity of Knowledge Rough Entropy and Improved Artificial Bee Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    经典的人工蜂群(artificial bee colony, ABC)算法面临着收敛速度慢、易陷入局部最优等不足, 因此基于该算法来进行特征选择还存在很多问题. 对此, 提出了一种基于粒度粗糙熵与改进蜂群算法的特征选择方法FS_GREIABC. 首先, 将粗糙集中的知识粒度与粗糙熵有机地结合起来, 提出一种新的信息熵模型——粒度粗糙熵; 其次, 将粒度粗糙熵应用于ABC算法中, 提出一种基于粒度粗糙熵的适应度函数, 从而获得了一种新的适应度计算策略; 第三, 为了提高ABC算法的局部搜索能力, 将云模型引入到跟随蜂阶段. 在多个UCI数据集以及软件缺陷预测数据集上的实验表明, 相对于现有的特征选择算法, FS_GREIABC不仅能够选择较少的特征, 而且具有更好的分类性能.

    Abstract:

    The classical artificial bee colony (ABC) algorithm is also faced with slow convergence speed, and it is easy to fall into local optimality, so there are still many problems in feature selection based on this algorithm. Therefore, a feature selection method based on the rough entropy of granularity and an improved bee colony algorithm, namely FS_GREIABC, is proposed. Firstly, a new information entropy model, namely the rough entropy of granularity, is proposed by combining the knowledge granularity and the rough entropy in the rough set. Secondly, the rough entropy of granularity is applied to the ABC algorithm, and a fitness function based on the rough entropy of granularity is proposed, so as to obtain a new fitness calculation strategy. Thirdly, in order to improve the local search ability of the ABC algorithm, a cloud model is introduced into the following bee stage. Experiments on multiple UCI datasets and software defect prediction datasets show that FS_GREIABC not only selects fewer features but also has better classification performance than the existing feature selection algorithms.

    参考文献
    相似文献
    引证文献
引用本文

孙雅芝,江峰,杨志勇.基于粒度粗糙熵与改进蜂群算法的特征选择.计算机系统应用,2023,32(6):121-129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-07
  • 最后修改日期:2022-12-10
  • 录用日期:
  • 在线发布日期: 2023-04-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号