面向轨道分割与侵入物检测的多任务学习
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

海南省联合基金(SQ2021ZRLH0042); 黑龙江省联合基金(JJ2022LH0485); 中央高校项目(3072022FSC0401)


Multitask Learning for Railway Track Segmentation and Intrusion Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    轨道车智能防护会涉及轨道车侵入物检测与行驶区域分割任务, 在深度学习领域已有针对各任务的算法, 却无法很好满足多任务情形时的需求. 该算法使用轻量级卷积神经网络(CNN)作为编码器提取特征图, 随之将特征图送到两个基于one-stage检测网络的解码器中, 进而完成各自的任务. 不同级别和尺度的语义特征在编码器输出的特征图中被融合, 良好地完成像素级语义预测, 在检测和分割效果上有明显提升. 采用本算法的设备将掌握对新目标的识别检测判断与追踪, 为提升轨道车行驶安全做出保障.

    Abstract:

    Intelligent protection for rail vehicles involves the tasks of railway track intrusion detection and driving area segmentation. In the field of deep learning, there are algorithms for each task, but they cannot meet the needs of multi-task situations very well. This algorithm uses a lightweight convolution neural network (CNN) as an encoder to extract the feature map and then sends it to two decoders based on one-stage detection network to complete their respective tasks. Semantic features of different levels and scales are fused in the feature map output by the encoder, which performs pixel-level semantic prediction well and improves the detection and segmentation performance significantly. The equipment using this algorithm will master the recognition, detection, judgment, and tracking of new targets, ensuring the traveling safety of rail vehicles.

    参考文献
    相似文献
    引证文献
引用本文

张硕,杨诗茵,孙博宇,许云飞,沈昊,吕永家,贾云鹏,邢会明,赵新华.面向轨道分割与侵入物检测的多任务学习.计算机系统应用,2023,32(7):188-194

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-01
  • 最后修改日期:2022-11-29
  • 录用日期:
  • 在线发布日期: 2023-05-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号