面向轨道分割与侵入物检测的多任务学习
作者:
基金项目:

海南省联合基金(SQ2021ZRLH0042); 黑龙江省联合基金(JJ2022LH0485); 中央高校项目(3072022FSC0401)


Multitask Learning for Railway Track Segmentation and Intrusion Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    轨道车智能防护会涉及轨道车侵入物检测与行驶区域分割任务, 在深度学习领域已有针对各任务的算法, 却无法很好满足多任务情形时的需求. 该算法使用轻量级卷积神经网络(CNN)作为编码器提取特征图, 随之将特征图送到两个基于one-stage检测网络的解码器中, 进而完成各自的任务. 不同级别和尺度的语义特征在编码器输出的特征图中被融合, 良好地完成像素级语义预测, 在检测和分割效果上有明显提升. 采用本算法的设备将掌握对新目标的识别检测判断与追踪, 为提升轨道车行驶安全做出保障.

    Abstract:

    Intelligent protection for rail vehicles involves the tasks of railway track intrusion detection and driving area segmentation. In the field of deep learning, there are algorithms for each task, but they cannot meet the needs of multi-task situations very well. This algorithm uses a lightweight convolution neural network (CNN) as an encoder to extract the feature map and then sends it to two decoders based on one-stage detection network to complete their respective tasks. Semantic features of different levels and scales are fused in the feature map output by the encoder, which performs pixel-level semantic prediction well and improves the detection and segmentation performance significantly. The equipment using this algorithm will master the recognition, detection, judgment, and tracking of new targets, ensuring the traveling safety of rail vehicles.

    参考文献
    [1] 王强, 刘智平, 王松林, 等. CTCS-1级列控系统总体方案思考与建议. 中国铁路, 2021, (2): 81–87. [doi: 10.19549/j.issn.1001-683x.2021.02.081
    [2] 曾晓青. ATP子系统列车追踪间隔及防护研究. 铁道运营技术, 2021, 27(2): 24–25. [doi: 10.13572/j.cnki.tdyy.2021.02.009
    [3] 刘海波, 盛蒙蒙, 杨晓倩. 一种车载毫米波列车防撞雷达系统研究. 雷达学报, 2013, 2(2): 234–238. [doi: 10.3724/SP.J.1300.2013.20091
    [4] Wu SL, Wang Y, Yang HY, et al. Improved Faster R-CNN for the detection method of industrial control logic graph recognition. Frontiers in Bioengineering and Biotechnology, 2022, 10: 944944. [doi: 10.3389/fbioe.2022.944944
    [5] 王鹏飞, 黄汉明, 王梦琪. 改进YOLOv5的复杂道路目标检测算法. 计算机工程与应用, 2022, 58(17): 81–92. [doi: 10.3778/j.issn.1002-8331.2205-0158
    [6] 赵红爱, 王旭智, 万旺根. 一种用于车辆图像分割的MSSA-UNet模型. 电子测量技术, 2022, 45(8): 102–107. [doi: 10.19651/j.cnki.emt.2208764
    [7] Wu H, Song HN, Huang JH, et al. Flood detection in dual-polarization SAR images based on multi-scale DeepLab model. Remote Sensing, 2022, 14(20): 5181. [doi: 10.3390/rs14205181
    [8] Wu YQ, Sun YB, Zhang SQ, et al. A size-grading method of antler mushrooms using YOLOv5 and PSPNet. Agronomy, 2022, 12(11): 2601. [doi: 10.3390/agronomy12112601
    [9] Janarthanan P, Murugesh V, Sivakumar N, et al. An efficient face detection and recognition system using RVJA and SCNN. Mathematical Problems in Engineering, 2022, 2022: 7117090. [doi: 10.1155/2022/7117090
    [10] 霍爱清, 杨玉艳, 谢国坤. 基于改进YOLOv3算法的车辆目标检测. 计算机工程与设计, 2022, 43(7): 1981–1989. [doi: 10.16208/j.issn1000-7024.2022.07.023
    [11] 李浩然, 李镇翰, 吴田, 等. 二维最大熵阈值优化的Canny算子的绝缘子边缘检测研究. 高压电器, 2022, 58(11): 205–211, 220. [doi: 10.13296/j.1001-1609.hva.2022.11.026
    [12] Du WS, Zhu YJ, Li SS, et al. Spikelets detection of table grape before thinning based on improved YOLOv5s and K-means under the complex environment. Computers and Electronics in Agriculture, 2022, 203: 107432. [doi: 10.1016/j.compag.2022.107432
    [13] 闫彬, 樊攀, 王美茸, 等. 基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别. 农业机械学报, 2022, 53(9): 28–38, 59. [doi: 10.6041/j.issn.1000-1298.2022.09.003
    [14] Li G, Fu LS, Gao CQ, et al. Multi-class detection of kiwifruit flower and its distribution identification in orchard based on YOLOv5l and Euclidean distance. Computers and Electronics in Agriculture, 2022, 201: 107342. [doi: 10.1016/j.compag.2022.107342
    [15] 邢宇驰, 李大军, 叶发茂. 基于YOLOv5的遥感图像目标检测. 江西科学, 2021, 39(4): 725–732. [doi: 10.13990/j.issn.1001-3679.2021.04.029
    [16] Zhang P, Liu XM, Yuan J, et al. YOLO5-spear: A robust and real-time spear tips locator by improving image augmentation and lightweight network for selective harvesting robot of white asparagus. Biosystems Engineering, 2022, 218: 43–61. [doi: 10.1016/j.biosystemseng.2022.04.006
    [17] 范艺华, 董张玉, 杨学志. 结合上下文编码与特征融合的SAR图像分割. 中国图象图形学报, 2022, 27(8): 2527–2536. [doi: 10.11834/jig.210056
    [18] Wu XY, Wu ZY, Ju LL, et al. A one-stage domain adaptation network with image alignment for unsupervised nighttime semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 58–72. [doi: 10.1109/TPAMI.2021.3138829
    [19] Sohn S, Byun HE, Lee JH, et al. Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation. Applied Energy, 2022, 328: 120204. [doi: 10.1016/j.apenergy.2022.120204
    [20] Wu D, Liao MW, Zhang WT, et al. YOLOP: You only look once for panoptic driving perception. Machine Intelligence Research, 2022, 19(6): 550–562. [doi: 10.1007/s11633-022-1339-y
    [21] Zhu LX, Lee F, Cai JW, et al. An improved feature pyramid network for object detection. Neurocomputing, 2022, 483: 127–139. [doi: 10.1016/j.neucom.2022.02.016
    [22] 邓天民, 方芳, 周臻浩. 基于改进空间金字塔池化卷积神经网络的交通标志识别. 计算机应用, 2020, 40(10): 2872–2880. [doi: 10.11772/j.issn.1001-9081.2020020214
    [23] 李宗民, 李亚传, 赫俊民, 等. 专注智能油藏储量预测的深度时空注意力模型. 中国石油大学学报(自然科学版), 2020, 44(4): 77–82. [doi: 10.3969/j.issn.1673-5005.2020.04.009
    [24] 刘超, 韩懈. 基于SE-YOLOv4的变电站断路器分合状态识别算法. 软件导刊, 2022, 21(9): 40–44. [doi: 10.11907/rjdk.212435
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张硕,杨诗茵,孙博宇,许云飞,沈昊,吕永家,贾云鹏,邢会明,赵新华.面向轨道分割与侵入物检测的多任务学习.计算机系统应用,2023,32(7):188-194

复制
分享
文章指标
  • 点击次数:571
  • 下载次数: 1524
  • HTML阅读次数: 1006
  • 引用次数: 0
历史
  • 收稿日期:2022-11-01
  • 最后修改日期:2022-11-29
  • 在线发布日期: 2023-05-19
文章二维码
您是第11184147位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号