改进PSO算法及在无人机路径规划中的应用
作者:

Improved PSO Algorithm and Its Application in Route Planning of UAV
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在无人机路径规划问题中, 传统算法存在计算复杂与收敛慢等缺点, 粒子群优化算法(PSO)得益于其算法原理简单、通用性强、搜索全面等特性, 现多用于无人机航路规划. 然而, 常规PSO算法容易陷入局部最优, 本文在优化调整自适应参数的基础上综合引入全局极值变异与加速度项, 以平衡全局和局部搜索效率, 避免种群陷入“早熟”. 对基准测试函数进行测试的结果表明, 本文所提改进PSO算法收敛速度更快, 精度更高. 在实例验证部分, 首先提取飞行场景特征, 结合无人机性能约束, 进行环境建模; 然后将多项运行约束和期望的最小化飞行时间均转化为罚函数, 以最小化罚函数作为目标, 构建无人机飞行任务场景下的航路规划模型, 并利用本文所提改进粒子群算法进行求解, 最后通过对比仿真验证了改进粒子群算法的高效性和实用性.

    Abstract:

    In the path planning of unmanned aerial vehicles (UAVs), the traditional algorithm has the disadvantages of complex computation and slow convergence, while particle swarm optimization (PSO) features simple principle, strong universality, and comprehensive search, which is mainly used in UAV route planning. As the conventional PSO algorithm is easy to fall into the local optimum, this study integrates the global extreme variation and acceleration terms based on the adaptive parameter optimization to balance the global and local search efficiency and avoid the population falling into “premature”. Through the test of a variety of benchmark functions, the results show that the improved PSO algorithm proposed in this study has faster convergence speed and higher convergence accuracy. In the example verification part, the flight scene features are first extracted, and the environment modeling is carried out based on the UAV performance constraints. Then multiple constraints and the expected minimum flight time are converted into penalty functions. With the minimization of penalty functions as the objective, the route planning model is constructed, and the improved PSO algorithm is adopted to solve the problem. Finally, the effectiveness and practicability of the improved PSO algorithm are verified by comparative simulation.

    参考文献
    [1] 邹蒲, 邓吉秋, 刘立, 等. 地质灾害应急中无人机运输与飞行路径规划. 测绘与空间地理信息, 2017, 40(10): 15–17, 20. [doi: 10.3969/j.issn.1672-5867.2017.10.005
    [2] 王琼, 刘美万, 任伟建, 等. 无人机航迹规划常用算法综述. 吉林大学学报(信息科学版), 2019, 37(1): 58–67. [doi: 10.19292/j.cnki.jdxxp.2019.01.008
    [3] Li M, Zhang F, Fang JY. Optimal path solution based on Dijkstra algorithm. Frontiers in Economics and Management, 2021, 2(6): 170–176
    [4] Xiao SC, Tan XJ, Wang JP. A simulated annealing algorithm and grid map-based UAV coverage path planning method for 3D reconstruction. Electronics, 2021, 10(7): 853. [doi: 10.3390/electronics10070853
    [5] Wang X, Yong EM, He KF, et al. Research on artificial potential field route planning method based on threat level assessment. Proceedings of the 33rd Chinese Control and Decision Conference. Kunming: IEEE, 2021. 510–516.
    [6] 康玉祥, 姜春英, 秦运海, 等. 基于改进PSO算法的机器人路径规划及实验. 机器人, 2020, 42(1): 71–78. [doi: 10.13973/j.cnki.robot.190035
    [7] 李鹏, 李兵舰, 亓亮, 等. 一种改进的粒子群优化算法及其在无人机航路规划中的应用. 舰船电子对抗, 2019, 42(5): 59–64. [doi: 10.16426/j.cnki.jcdzdk.2019.05.015
    [8] Liu Y, Zhang XJ, Zhang Y, et al. Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach. Chinese Journal of Aeronautics, 2019, 32(6): 1504–1519. [doi: 10.1016/j.cja.2019.03.026
    [9] 付兴武, 胡洋. 基于改进粒子群算法的三维路径规划. 电光与控制, 2021, 28(3): 86–89. [doi: 10.3969/j.issn.1671-637X.2021.03.017
    [10] 杨超杰, 裴以建, 刘朋. 改进粒子群算法的三维空间路径规划研究. 计算机工程与应用, 2019, 55(11): 117–122. [doi: 10.3778/j.issn.1002-8331.1808-0245
    [11] Clerc M, Kennedy J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58–73. [doi: 10.1109/4235.985692
    [12] 谢勇宏, 孔月萍. 基于改进粒子群算法的三维路径规划. 计算机测量与控制, 2022, 30(3): 179–182, 191
    相似文献
    引证文献
引用本文

张姝,汤淼.改进PSO算法及在无人机路径规划中的应用.计算机系统应用,2023,32(3):330-337

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-29
  • 最后修改日期:2022-08-26
  • 在线发布日期: 2022-12-09
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号