摘要:工厂环境复杂多变, 存在很多危险区域, 违规进入会给工人的生命健康带来严重的危害. 针对传统的检测方法操作复杂、识别效果差, 提出了一种基于改进YOLOv5s模型的危险区域工人入侵警报系统. 首先将基于SGBM算法双目测距技术融合进YOLOv5s目标检测中, 增加空间距离这一触发条件, 使得工人只有走近摄像头一定范围内才会触发声光报警. 进一步地, 在YOLOv5s中引入注意力机制, 通过对比实验证明了CA模块的引入对模型的平均准确率mAP@0.5提升最明显为1.86%. 结果显示此方法能够较为准确的识别出工人是否进入危险区域, 并进行声光报警, 提醒工人注意, 为工厂安全管理提供了新的手段.