摘要:为解决水面垃圾检测中存在目标形状尺度差异大, 难以区分背景以及目标偏小的问题, 本文提出了一种SPMYOLOv3目标检测算法来实现对水面垃圾的检测. 首先, 对收集到的水面垃圾数据集进行标注, 使用改进的K-means算法对数据集重新聚类, 得到与数据集更匹配的先验框. 其次, 在YOLOv3的主干网络后添加SE-PPM模块, 加强目标的特征信息, 保证目标尺度不变且保留全局信息. 再使用多向金字塔网络对不同尺度的特征图进行融合, 获得携带更加丰富的上下文信息的特征图. 最后使用在损失函数中使用focal loss计算负样本的置信度损失, 抑制了YOLOv3中正负样本不均衡问题. 改进后的算法在水面垃圾数据集上的实验结果表明, 相比于原YOLOv3算法检测精度提升了3.96%.