改进YOLOX-nano的火灾火焰烟雾检测
作者:
基金项目:

国家自然科学基金(61903227); 山东省重点研发计划(2019GGX104105)


Flame and Smoke Detection of Fires Based on Improved YOLOX-nano
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对在检测火焰和烟雾的火灾检测过程中存在火灾初期小目标难以检测的情况, 本文提出了一种基于自然指数损失(eCIoU)的改进YOLOX-nano (ASe-YOLOX-nano)目标检测算法. 首先, 提出一种新的目标检测函数eIoU损失函数来替代传统IoU损失, 解决在检测小目标时预测框和真实框易出现无交集的情况, 及无法反应宽高影响等问题. 其次, 在网络模型中引入注意力模块, 在网络初期模糊定位目标位置, 提高网络后期对目标尤其是小目标检测的准确性. 此外, 本文还采用软池化空间金字塔池化结构提取不同尺寸的空间特征信息, 可以提升模型对于空间布局和物体变性的鲁棒性, 因此目标较小时也可以提取充足的特征, 采用Mosaic增强技术预处理数据集, 提升模型的泛化能力, 以此进一步提高网络性能. 通过目标数据集进行对比验证, 其结果显示, mAP指标达到70.07%, 比原模型提高了3.46%, 火焰的准确率达到84.66%, 烟雾的达到74.56%, FPS能够稳定在73, 相对于传统YOLOX-nano算法拥有更好的火灾检测能力.

    Abstract:

    As small targets in the early stage of a fire are difficult to detect during flames and smoke detection of fires, this study proposes an improved YOLOX-nano (ASe-YOLOX-nano) object detection algorithm based on natural exponential loss (eCIoU). Firstly, a new object detection function, the eIoU loss function, is proposed to replace the traditional IoU loss, which solves the problems of no intersection between the prediction box and the real frame in small target detection and the inability to react to the influence of width and height. Secondly, the attention module is introduced in the network model to vaguely locate the target position in the early stage of the network and improve the accuracy of the detection of targets, especially small targets, in the later stage of the network. In addition, the soft pooled spatial pyramid pooling structure is employed to extract spatial feature information of different sizes, which can improve the robustness of the model for spatial layout and object degeneration. In this way, sufficient features can be extracted when the target is small. Moreover, the Mosaic enhancement technology is used to preprocess the dataset to improve the generalization ability of the model for further improvement in network performance. The comparative verification of the target data set shows that the mAP index reaches 70.07%, which is 3.46% higher than that of the original model, and the model enjoys accuracy of flame and smoke detection of 84.66% and 74.56%, respectively, and a stable FPS of 73, which has better fire detection ability than the traditional YOLOX-nano algorithm.

    参考文献
    [1] Zhou XP, Li HR, Wang J, et al. CloudFAS: Cloud-based building fire alarm system using building information modelling. Journal of Building Engineering, 2022, 53: 104571. [doi: 10.1016/j.jobe.2022.104571
    [2] Jung S, Cha HS, Jiang SH. Developing a building fire information management system based on 3D object visualization. Applied Sciences, 2020, 10(3): 772. [doi: 10.3390/app10030772
    [3] binti Zaidi NI, binti Lokman NAA, bin Daud MR, et al. Fire recognition using RGB and ycbcr color space. ARPN Journal of Engineering and Applied Sciences, 2015, 10(21): 9786–9790
    [4] Li ZL, Mihaylova LS, Isupova O, et al. Autonomous flame detection in videos with a Dirichlet process Gaussian mixture color model. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1146–1154. [doi: 10.1109/TII.2017.2768530
    [5] Wang Y, Dang L, Ren J. Forest fire image recognition based on convolutional neural network. Journal of Algorithms & Computational Technology. 2019, 13: 1–11.
    [6] Sharma J, Granmo OC, Goodwin M, et al. Deep convolutional neural networks for fire detection in images. Proceedings of the 18th International Conference on Engineering Applications of Neural Networks. Athens: Springer, 2017. 183–193.
    [7] Yang HJ, Jang H, Kim T, et al. Non-temporal lightweight fire detection network for intelligent surveillance systems. IEEE Access, 2019, 7: 169257–169266. [doi: 10.1109/ACCESS.2019.2953558
    [8] Zhang JM, Zhu HQ, Wang PY, et al. ATT squeeze U-Net: A lightweight network for forest fire detection and recognition. IEEE Access, 2021, 9: 10858–10870. [doi: 10.1109/ACCESS.2021.3050628
    [9] He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. [doi: 10.1109/TPAMI.2015.2389824
    [10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [11] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6517–6525.
    [12] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [13] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944.
    [14] Wang Y, Yan G, Meng QL, et al. DSE-YOLO: Detail semantics enhancement YOLO for multi-stage strawberry detection. Computers and Electronics in Agriculture, 2022, 198: 107057. [doi: 10.1016/j.compag.2022.107057
    [15] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [16] Jocher G. YOLOv5. https://github.com/ultralytics/yolov5.
    [17] Ge Z, Liu ST, Wang F, et al. YOLOX: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    [18] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [19] Wang QL, Wu BG, Zhu PF, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 11531–11539.
    [20] Woo S, Park J, Lee JY, et al. CBAM: Convolutional block attention module. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 3–19.
    [21] Foggia P, Saggese A, Vento M. Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(9): 1545–1556. [doi: 10.1109/TCSVT.2015.2392531
    [22] Rezatofighi H, Tsoi N, Gwak JY, et al. Generalized intersection over union: A metric and a loss for bounding box regression. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 658–666.
    [23] Zheng ZH, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993–13000. [doi: 10.1609/aaai.v34i07.6999
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪子健,高焕兵,侯宇翔,杜传胜,贝太学.改进YOLOX-nano的火灾火焰烟雾检测.计算机系统应用,2023,32(3):265-274

复制
分享
文章指标
  • 点击次数:961
  • 下载次数: 1830
  • HTML阅读次数: 2457
  • 引用次数: 0
历史
  • 收稿日期:2022-08-12
  • 最后修改日期:2022-09-15
  • 在线发布日期: 2022-12-09
文章二维码
您是第11185318位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号