改进飞鼠搜索算法的自适应图像增强
作者:
基金项目:

国家自然科学基金(61976176)


Improved Squirrel Search Algorithm for Adaptive Image Enhancement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了实现灰度图像增强最佳参数的自动寻优, 提出一种改进飞鼠搜索算法的自适应图像增强方法. 在普通树上的飞鼠位置更新中引入双向搜索策略, 提高获得最好解的可能性; 利用螺旋觅食策略更新位于橡子树上的飞鼠位置, 提升算法的收敛速度和搜索精度. 在CEC 2017测试集上, 将所提算法BCSSA与蝙蝠算法、鲸鱼优化算法、基本的SSA和2种改进的SSA进行对比分析, 结果表明, BCSSA具有更高的稳定性和更快的收敛速度. 最后, 将所提出的BCSSA应用于灰度图像增强, 与经典的直方图均衡化方法和SSA进行了4种评价指标的性能比较, 证明了BCSSA的优越性.

    Abstract:

    In order to realize the automatic optimization of the optimal parameters of grayscale image enhancement, an adaptive image enhancement method based on an improved squirrel search algorithm is proposed. A bilateral search strategy is introduced into the position updating of the squirrels on normal trees to increase the likelihood of obtaining an optimal solution. A cyclone foraging strategy is used to update the position of the squirrels on acorn trees to improve the convergence rate and search accuracy of the algorithm. In addition, the proposed squirrel search algorithm with bilateral search and cyclone foraging (BCSSA) is compared with the bat algorithm (BA), whale optimization algorithm (WOA), basic squirrel search algorithm (SSA), and two improved SSAs on CEC 2017 test suite. The results indicate that BCSSA has higher stability and faster convergence rate. Finally, the proposed BCSSA is applied to grayscale image enhancement, and its performance is compared with that of the classical histogram equalization method and SSA in terms of four evaluation indicators, which thus validates the superiority of BCSSA.

    参考文献
    [1] 毕晓君, 潘铁文. 基于改进的教与学优化算法的图像增强方法. 哈尔滨工程大学学报, 2016, 37(12): 1716–1721
    [2] Ling ZG, Liang Y, Wang YN, et al. Adaptive extended piecewise histogram equalisation for dark image enhancement. IET Image Processing, 2015, 9(11): 1012–1019. [doi: 10.1049/iet-ipr.2014.0580
    [3] Tubbs JD. A note on parametric image enhancement. Pattern Recognition, 1987, 20(6): 617–621. [doi: 10.1016/0031-3203(87)90031-8
    [4] Luque-Chang A, Cuevas E, Pérez-Cisneros M, et al. Moth swarm algorithm for image contrast enhancement. Knowledge-based Systems, 2021, 212: 106607. [doi: 10.1016/j.knosys.2020.106607
    [5] Kamoona AM, Patra JC. A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images. Applied Soft Computing, 2019, 85: 105749. [doi: 10.1016/j.asoc.2019.105749
    [6] Draa A, Bouaziz A. An artificial bee colony algorithm for image contrast enhancement. Swarm and Evolutionary Computation, 2014, 16: 69–84. [doi: 10.1016/j.swevo.2014.01.003
    [7] Jain M, Singh V, Rani A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation, 2019, 44: 148–175. [doi: 10.1016/j.swevo.2018.02.013
    [8] Basu M. Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources. Energy, 2019, 182: 296–305. [doi: 10.1016/j.energy.2019.06.087
    [9] Wang YJ, Han JR. A FJSSP method based on dynamic multi-objective squirrel search algorithm. International Journal of Antennas and Propagation, 2021, 2021: 6062689
    [10] Minu MS, Canessane RA. An efficient squirrel search algorithm based vector quantization for image compression in unmanned aerial vehicles. Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). Coimbatore: IEEE, 2021. 789–793.
    [11] 何庆, 黄闽茗, 王旭. 基于精英反向学习的逐维改进蜻蜓算法. 南京师大学报(自然科学版), 2019, 42(3): 65–72
    [12] Zhao WG, Zhang ZX, Wang LY. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 2020, 87: 103300. [doi: 10.1016/j.engappai.2019.103300
    [13] Chen MR, Huang YY, Zeng GQ, et al. An improved bat algorithm hybridized with extremal optimization and Boltzmann selection. Expert Systems with Applications, 2021, 175: 114812. [doi: 10.1016/j.eswa.2021.114812
    [14] Chakraborty S, Saha AK, Chakraborty R, et al. An enhanced whale optimization algorithm for large scale optimization problems. Knowledge-based Systems, 2021, 233: 107543. [doi: 10.1016/j.knosys.2021.107543
    [15] 朱群锋, 王璐, 汪超. 基于粒子群算法策略改进的飞鼠优化算法. 洛阳理工学院学报(自然科学版), 2020, 30(4): 52–58
    [16] Fares D, Fathi M, Shams I, et al. A novel global MPPT technique based on squirrel search algorithm for PV module under partial shading conditions. Energy Conversion and Management, 2021, 230: 113773. [doi: 10.1016/j.enconman.2020.113773
    [17] 姜建国, 周佳薇, 周润生, 等. 一种采用改进细菌觅食优化算法的图像增强方法. 控制与决策, 2015, 30(3): 461–466. [doi: 10.13195/j.kzyjc.2013.1794
    [18] Chen J, Yu WY, Tian J, et al. Image contrast enhancement using an artificial bee colony algorithm. Swarm and Evolutionary Computation, 2018, 38: 287–294. [doi: 10.1016/j.swevo.2017.09.002
    [19] 邵保泰, 汤心溢, 金璐, 等. 基于生成对抗网络的单帧红外图像超分辨算法. 红外与毫米波学报, 2018, 37(4): 427–432. [doi: 10.11972/j.issn.1001-9014.2018.04.009
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高婕,王秋萍,李晓丹.改进飞鼠搜索算法的自适应图像增强.计算机系统应用,2023,32(3):282-290

复制
分享
文章指标
  • 点击次数:656
  • 下载次数: 1432
  • HTML阅读次数: 1220
  • 引用次数: 0
历史
  • 收稿日期:2022-07-30
  • 最后修改日期:2022-09-01
  • 在线发布日期: 2022-11-29
文章二维码
您是第11249952位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号