基于TD3算法的自动协商策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年基金(62006085)


Automated Negotiation Strategy Based on TD3 Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    协商是人们就某些议题进行交流寻求一致协议的过程. 而自动协商旨在通过协商智能体的使用降低协商成本、提高协商效率并且优化协商结果. 近年来深度强化学习技术开始被运用于自动协商领域并取得了良好的效果, 然而依然存在智能体训练时间较长、特定协商领域依赖、协商信息利用不充分等问题. 为此, 本文提出了一种基于TD3深度强化学习算法的协商策略, 通过预训练降低训练过程的探索成本, 通过优化状态和动作定义提高协商策略的鲁棒性从而适应不同的协商场景, 通过多头语义神经网络和对手偏好预测模块充分利用协商的交互信息. 实验结果表明, 该策略在不同协商环境下都可以很好地完成协商任务.

    Abstract:

    Negotiation refers to the process in which people communicate with each other on certain topics to reach an agreement. Automated negotiation aims to reduce negotiation costs, improve negotiation efficiency, and optimize negotiation results by using negotiating agents. In recent years, deep reinforcement learning techniques have been applied to the field of automated negotiation with good results. However, there are still problems such as the long training time of agents, dependence on specific negotiation domains, and insufficient utilization of negotiation information. Therefore, this study proposes a negotiation strategy based on the TD3 deep reinforcement learning algorithm, which reduces the exploration cost of the training process through pre-training and improves the robustness of the negotiation strategy by optimizing the state and action definitions, so as to adapt to different negotiation scenarios. In addition, it makes full use of the interaction information of the negotiation by multi-head semantic neural network and opponent preference prediction module. The experimental results show that the strategy can perform the negotiation task well in different negotiation environments.

    参考文献
    相似文献
    引证文献
引用本文

陈佐明,詹捷宇.基于TD3算法的自动协商策略.计算机系统应用,2023,32(3):15-24

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-27
  • 最后修改日期:2022-08-26
  • 录用日期:
  • 在线发布日期: 2022-11-18
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号