扩展YOLOv5安全帽多级目标分类检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFB1003705)


Extended YOLOv5 for Multi-level Target Classification Detection of Helmet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    YOLO是目前计算机视觉目标检测领域比较重要的算法模型之一. 基于现有YOLOv5s模型提出了一种扩展的YOLOv5多级分类目标检测算法模型. 首先, 对LabelImg标注工具进行功能扩展, 使其满足多级分类标签文件构建; 其次在YOLOv5s算法基础上修改检测头输出格式, 在骨干网络前端引入DenseBlock、Res2Net网络模型核心设计思想, 获取丰富的多维度特征信息, 增强特征信息的重用性, 实现了YOLO多级分类目标检测任务. 在开源安全帽数据集上同时以安全帽颜色作为二级分类进行训练验证, 平均精度, 精确率和召回率分别达到了95.81%、94.90%和92.54%, 实验结果验证了YOLOv5多级分类目标检测任务的可行性, 并为目标检测及多级分类目标检测任务提供一种新的思路和方法.

    Abstract:

    YOLO is one of the most important algorithm models in the target detection of computer vision. Given the existing YOLOv5s model, an extended YOLOv5 algorithm model for multi-level classification target detection is proposed. Firstly, the function of the annotation tool LabelImg is extended to construct multi-level classification label files. Secondly, the output format of the detection head is modified on this basis of the YOLOv5s algorithm, and the core design idea of the DenseBlock and Res2Net network model is introduced in the front end of the backbone network to extract rich mul-ti-dimensional feature information, enhance the reusability of feature information, and realize the task of YOLO-based multi-level classification target detection. The helmet color is taken as the secondary classification for training and verification on the open source helmet data set, and the average precision, precision, and recall reach 95.81%, 94.90%, and 92.54%, respectively. The experimental results verify the feasibility of the YOLOv5-based multi-level classification target detection task, and the proposed model provides a new idea and method for target detection and multi-level classification target detection tasks.

    参考文献
    相似文献
    引证文献
引用本文

金源,张长鲁.扩展YOLOv5安全帽多级目标分类检测.计算机系统应用,2023,32(2):139-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-11
  • 最后修改日期:2022-08-09
  • 录用日期:
  • 在线发布日期: 2022-11-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号