基于Conv1d-LSTM模型的能源分配预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Energy Distribution Prediction Based on Conv1d-LSTM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    能源分配问题往往与其所在区域环境有关, 能源分配的预测可以通过当地环境因素数据来推测之后对该区域的能源分配数值, 最大程度上分配好能源. LSTM网络预测短期效果良好, 但预测较长时期的数据会导致误差积累, 速度慢且准确性差; Informer是近期新提出的能源预测算法模型, 速度快但在该任务上预测能力不够. 本文提出Conv1d-LSTM模型, 预测结果优于上述两个模型, 具有更低的平均绝对误差和均方根误差.

    Abstract:

    Energy distribution is often related to the local environment. Regarding energy distribution prediction, data on local environmental factors can be availed to predict the value of energy to be distributed to the region, thereby maximizing the extent of proper energy distribution. The long short-term memory (LSTM) network, despite its favorable short-term prediction effect, is weakened by error accumulation, a slow speed, and poor accuracy when it is used for long-term data prediction. As a new algorithmic energy prediction model recently proposed, Informer is fast but not sufficiently capable of prediction in this task. This study proposes a Conv1d-LSTM model that achieves better prediction results than those of the above two models with a smaller mean absolute error (MAE) and root mean square error (RMSE).

    参考文献
    相似文献
    引证文献
引用本文

安鹤男,姜邦彦,管聪,马超,邓武才.基于Conv1d-LSTM模型的能源分配预测.计算机系统应用,2023,32(1):206-213

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-29
  • 最后修改日期:2022-06-29
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号