基于云模型和余弦跳跃权重的改进蛙跳算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省自然科学基金(2019-zd-0108)


Improved Shuffled Frog Leaping Algorithm Based on Cloud Model and Cosine Leap Weights
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    标准蛙跳优化算法(SFLA)有寻优精度低和易陷入局部收敛区域的缺点, 为提高其性能, 提出一种基于云模型局部搜索和余弦跳跃权重更新位置的改进蛙跳算法(CSFLA). 首先通过Tent混沌映射和反向学习生成种群, 使种群的分布更均匀, 利用云模型的正态特性对子群中的优秀个体的所在区域进行探索. 同时, 对种群中其他个体引入基于余弦函数的跳跃步长权重, 使该权重在整个迭代过程中由高以不同的速率下降, 提高种群的全局搜索能力. 最后, 将CSFLA与多个优化算法在不同类型的测试函数上进行了比较. 结果表明, CSFLA具有更好的收敛速度和精度, 能有效找出全局最优解. 并且将改进算法应用至旅行商问题, 该算法可以找到总路程更短的路线.

    Abstract:

    The standard shuffled frog leaping algorithm (SFLA) for optimization has the shortcomings of low optimization accuracy and easy falling into a local convergence area. To improve its performance, this study proposes an improved SFLA (CSFLA) based on local search with a cloud model and cosine leap weight update position. First, Tent chaotic mapping and backward learning are performed to generate a population so that the population has a more uniform distribution. The area where the best individuals in the subpopulation are located is explored by taking advantage of the normal property of the cloud model. Then, the leaping step size weight based on the cosine function is introduced to other individuals in the population, which makes the weight decrease from a high level at different rates throughout the iterations to improve the global search ability of the population. Finally, CSFLA is compared with multiple optimization algorithms on different types of test functions. The results show that CSFLA has a better convergence speed and accuracy and can find the global optimal solution effectively. The improved algorithm is applied to the traveling salesman problem and proved able to find shorter routes.

    参考文献
    相似文献
    引证文献
引用本文

刘耿旗,张旭秀,马洪源.基于云模型和余弦跳跃权重的改进蛙跳算法.计算机系统应用,2023,32(2):207-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-24
  • 最后修改日期:2022-07-25
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号