改进YOLOv4框架的胃息肉检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省自然科学基金(2021JJ50049, 2022JJ50077); 湖南省教育厅重点项目(21A0607)


Improved YOLOv4 Framework for Gastric Polyp Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在计算机视觉的内窥胃部息肉检测中, 高效提取小型息肉图像特征是设计深度学习的计算机视觉模型一个难点. 针对该问题, 提出了一种YOLOv4改进的YOLOv4-polyp检测模型. 首先在YOLOv4的基础上, 引入CBAM卷积注意力模块增强模型在复杂环境的特征提取能力; 其次设计出轻量级CSPDarknet-49网络模型, 在降低模型复杂度的同时提高检测精度和检测速度; 最后根据胃息肉数据集的特点, 采用K-means++聚类算法对胃息肉数据集进行聚类分析, 得到优化后的锚框. 实验对比结果表明, YOLOv4-polyp对于经典YOLOv4模型在保持检测速率不变的同时, 在两个数据集中平均检测精度分别提升了5.21%和2.05%, 表现出良好的检测性能.

    Abstract:

    In endoscopic gastric polyp detection based on computer vision, efficiently extracting the features of images of small polyps is a difficulty in the design of a deep learning-based computer vision model. To solve this problem, this study proposes a detection model based on an improved you only look once version 4 (YOLOv4), namely YOLOv4-polyp. Specifically, on the basis of YOLOv4, this study adds a convolutional block attention module (CBAM) to enhance the feature extraction capability of the model in complex environments. Then, a lightweight CSPDarknet-49 network model is designed to both reduce the complexity of the model and improve its detection accuracy and detection speed. Finally, considering the characteristics of the gastric polyp datasets, the K-means++ clustering algorithm is used for the cluster analysis of the gastric polyp datasets and the attainment of the optimized anchor box. The experimental comparison results show that compared with the classical YOLOv4 model, the proposed YOLOv4-polyp achieves favorable detection performance on the two datasets as it improves the average detection accuracy by 5.21% and 2.05%, respectively, without compromising the detection speed.

    参考文献
    相似文献
    引证文献
引用本文

吴宇杰,肖满生,范明凯,胡一凡.改进YOLOv4框架的胃息肉检测.计算机系统应用,2023,32(2):250-257

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-17
  • 最后修改日期:2022-07-18
  • 录用日期:
  • 在线发布日期: 2022-11-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号