卫星视频中的单目标分割和跟踪
作者:

Single Target Segmentation and Tracking in Satellite Video
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对于卫星视频图像中存在的目标与背景对比性低、缺乏目标特征信息等问题, 提出一种结合目标运动信息、时空背景和外观模型的目标分割和跟踪方法. 根据首帧定位得到目标区域, 首先对目标使用方向梯度直方图方法提取特征利用核相关滤波器得到目标跟踪区域1; 接着利用颜色空间特征建立目标与其周围区域上下文信息的空间模型得到目标跟踪区域2; 然后利用视觉背景提取算法以像素为单位在目标区域上检测运动目标得到单目标的分割区域3; 最后分别对3个区域进行相关计算得到最优区域作为最终目标跟踪位置和模板更新样本. 实验结果表明, 本文算法与KCF算法相比, 跟踪的成功率和准确率有很大的提高, 同时实现了单目标分割.

    Abstract:

    To address the problems of low contrast between target and background and lack of target feature information facing satellite video images, this study proposes a target segmentation and tracking method combining target motion information, spatio-temporal background, and appearance model. After the target area is obtained by positioning in the first frame, the histogram of oriented gradient method is employed to extract the features of the target, and the kernel correlation filter (KCF) is utilized to obtain the target tracking area 1. Subsequently, color and spatial features are used to build a spatial model of the context information about the target and its surrounding area and thereby obtain the target tracking area 2. Then, the visual background extraction algorithm is applied to detect the moving target in the target area in pixels and further obtain the segmentation area 3 of the single target. Finally, the correlation of the three areas is calculated, respectively, to obtain the optimal area as the final target tracking position and the template update sample. The experimental results show that compared with the KCF algorithm, the proposed algorithm obtains a significantly higher tracking success rate and accuracy and also achieves single target segmentation.

    参考文献
    [1] Bolme DS, Beveridge JR, Draper BA, et al. Visual object tracking using adaptive correlation filters. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010. 2544–2550.
    [2] Henriques JF, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels. Proceedings of the 12th European Conference on Computer Vision. Florence: Springer, 2012. 702–715.
    [3] Danelljan M, Khan FS, Felsberg M, et al. Adaptive color attributes for real-time visual tracking. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 1090–1097.
    [4] Henriques JF, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. [doi: 10.1109/TPAMI.2014.2345390
    [5] Zhang KH, Zhang L, Liu QS, et al. Fast visual tracking via dense spatio-temporal context learning. Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer, 2014. 127–141.
    [6] Shao J, Du B, Wu C, et al. Can we track targets from space? A hybrid kernel correlation filter tracker for satellite video. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8719–8731. [doi: 10.1109/TGRS.2019.2922648
    [7] Xuan SY, Li SY, Han MF, et al. Object tracking in satellite videos by improved correlation filters with motion estimations. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1074–1086. [doi: 10.1109/TGRS.2019.2943366
    [8] Wang YM, Wang TY, Zhang G, et al. Small target tracking in satellite videos using background compensation. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7010–7021. [doi: 10.1109/TGRS.2020.2978512
    [9] 韩鸣飞, 李盛阳, 万雪, 等. 融合特征的卫星视频车辆单目标跟踪. 中国图象图形学报, 2021, 26(11): 2741–2750
    [10] Zhang WH, Jiao LC, Liu F, et al. MBLT: Learning motion and background for vehicle tracking in satellite videos. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4703315. [doi: 10.1109/TGRS.2021.3109028
    [11] Barnich O, Van Droogenbroeck M. ViBe: A universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing, 2011, 20(6): 1709–1724. [doi: 10.1109/TIP.2010.2101613
    [12] Zhao MQ, Li SY, Xuan SY, et al. SatSOT: A benchmark dataset for satellite video single object tracking. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5617611. [doi: 10.1109/TGRS.2022.3140809
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王丽黎,张慧.卫星视频中的单目标分割和跟踪.计算机系统应用,2023,32(2):406-411

复制
分享
文章指标
  • 点击次数:852
  • 下载次数: 1439
  • HTML阅读次数: 1282
  • 引用次数: 0
历史
  • 收稿日期:2022-06-20
  • 最后修改日期:2022-07-18
  • 在线发布日期: 2022-09-23
文章二维码
您是第11336308位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号