摘要:相比基于特征点的传统图像特征匹配算法, 基于深度学习的特征匹配算法能产生更大规模和更高质量的匹配. 为获取较大范围且清晰的路面裂缝图像, 并解决弱纹理图像拼接过程中发生的匹配对缺失问题, 本文基于深度学习LoFTR (detector-free local feature matching with Transformers)算法实现路面图像的拼接, 并结合路面图像的特点, 提出局部拼接方法缩短算法运行的时间. 先对相邻图像做分割处理, 再通过LoFTR算法产生密集特征匹配, 根据匹配结果计算出单应矩阵值并实现像素转换, 然后通过基于小波变换的图像融合算法获得局部拼接后的图像, 最后添加未输入匹配网络的部分图像, 得到相邻图像的完整拼接结果. 实验结果表明, 与基于SIFT (scale-invariant feature transform)、SURF (speeded up robust features)、ORB (oriented FAST and rotated BRIEF)的图像拼接方法比较, 研究所提出的拼接方法对路面图像的拼接效果更佳, 特征匹配阶段产生的匹配结果置信度更高. 对于两幅路面图像的拼接, 采用局部拼接方法耗费的时间较改进之前缩短了27.53%. 研究提出的拼接方案是高效且准确的, 能够为道路病害监测提供总体病害信息.