基于混合策略的改进哈里斯鹰优化算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61872153, 61972288)


Improved Harris Hawks Optimization Algorithm Based on Hybrid Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对原始哈里斯鹰优化算法(HHO)存在的收敛精度低、收敛速度慢、易陷入局部最优等不足, 提出了一种基于混合策略的改进哈里斯鹰优化算法(HSHHO). 首先, 在种群初始化阶段引入Sobol序列, 生成均匀分布的种群, 提高种群的多样性, 有利于提高算法的收敛速度; 其次, 引入limit阈值, 令算法在一定迭代次数没有获得更优值后执行全局探索操作, 提高算法跳出局部最优解的能力, 改善HHO在迭代后期只执行开发阶段而易陷入局部最优的缺陷; 最后, 提出一种动态的反向学习机制, 提高算法的收敛精度以及跳出局部最优的能力. 在9个基准函数和6个CEC2017函数上进行测试, 与其他多种优化算法、HHO变体作对比, 验证所提出策略的有效性, 并进行Wilcoxon符号秩检验、Friedman检验和Quade检验等非参数检验. 实验结果表明, HSHHO在收敛速度、寻优精度和统计测试方面具有较为优秀的性能. 最后, 还应用到焊接梁设计优化问题, 结果表明改进的算法对于带约束的实际工程优化问题也具有更好的效果.

    Abstract:

    Original Harris hawks optimization (HHO) has low convergence accuracy and slow convergence speed and is easy to fall into local optimum. In view of these problems, an improved HHO based on a hybrid strategy (HSHHO) is proposed. Firstly, the Sobol sequence is introduced in the population initialization stage to generate a uniformly distributed population, which enriches the diversity of the population and helps to improve the convergence speed of the algorithm. Secondly, the limit threshold is introduced to make the algorithm perform global exploration when it does not obtain a better value within a certain number of iterations. This can improve the ability of the algorithm to jump out of a locally optimal solution and solve the problem that HHO is prone to fall into a locally optimal solution in late iterations because it only executes the development phase. Finally, a dynamic backward learning mechanism is proposed to improve the algorithm’s convergence accuracy and ability to jump out of the local optimum. The proposed algorithm is tested by nine benchmark functions and six CEC2017 functions and compared with various optimization algorithms and HHO variants. As a result, this study verifies the effectiveness of the proposed strategies and performs Wilcoxon signed rank test, Friedman test, and Quade test. The experimental results show that HSHHO has great performance in terms of convergence speed, optimization accuracy, and statistical tests. Furthermore, the proposed algorithm is applied to the design optimization of welded beams. The results show that HSHHO also has a positive effect on practical engineering optimization problems with constraints.

    参考文献
    相似文献
    引证文献
引用本文

张海林,陈泯融.基于混合策略的改进哈里斯鹰优化算法.计算机系统应用,2023,32(1):166-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-11
  • 最后修改日期:2022-07-06
  • 录用日期:
  • 在线发布日期: 2022-09-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号