基于混合策略的改进哈里斯鹰优化算法
作者:
基金项目:

国家自然科学基金(61872153, 61972288)


Improved Harris Hawks Optimization Algorithm Based on Hybrid Strategy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对原始哈里斯鹰优化算法(HHO)存在的收敛精度低、收敛速度慢、易陷入局部最优等不足, 提出了一种基于混合策略的改进哈里斯鹰优化算法(HSHHO). 首先, 在种群初始化阶段引入Sobol序列, 生成均匀分布的种群, 提高种群的多样性, 有利于提高算法的收敛速度; 其次, 引入limit阈值, 令算法在一定迭代次数没有获得更优值后执行全局探索操作, 提高算法跳出局部最优解的能力, 改善HHO在迭代后期只执行开发阶段而易陷入局部最优的缺陷; 最后, 提出一种动态的反向学习机制, 提高算法的收敛精度以及跳出局部最优的能力. 在9个基准函数和6个CEC2017函数上进行测试, 与其他多种优化算法、HHO变体作对比, 验证所提出策略的有效性, 并进行Wilcoxon符号秩检验、Friedman检验和Quade检验等非参数检验. 实验结果表明, HSHHO在收敛速度、寻优精度和统计测试方面具有较为优秀的性能. 最后, 还应用到焊接梁设计优化问题, 结果表明改进的算法对于带约束的实际工程优化问题也具有更好的效果.

    Abstract:

    Original Harris hawks optimization (HHO) has low convergence accuracy and slow convergence speed and is easy to fall into local optimum. In view of these problems, an improved HHO based on a hybrid strategy (HSHHO) is proposed. Firstly, the Sobol sequence is introduced in the population initialization stage to generate a uniformly distributed population, which enriches the diversity of the population and helps to improve the convergence speed of the algorithm. Secondly, the limit threshold is introduced to make the algorithm perform global exploration when it does not obtain a better value within a certain number of iterations. This can improve the ability of the algorithm to jump out of a locally optimal solution and solve the problem that HHO is prone to fall into a locally optimal solution in late iterations because it only executes the development phase. Finally, a dynamic backward learning mechanism is proposed to improve the algorithm’s convergence accuracy and ability to jump out of the local optimum. The proposed algorithm is tested by nine benchmark functions and six CEC2017 functions and compared with various optimization algorithms and HHO variants. As a result, this study verifies the effectiveness of the proposed strategies and performs Wilcoxon signed rank test, Friedman test, and Quade test. The experimental results show that HSHHO has great performance in terms of convergence speed, optimization accuracy, and statistical tests. Furthermore, the proposed algorithm is applied to the design optimization of welded beams. The results show that HSHHO also has a positive effect on practical engineering optimization problems with constraints.

    参考文献
    [1] Jiang QP, Shao F, Lin WS, et al. Optimizing multistage discriminative dictionaries for blind image quality assessment. IEEE Transactions on Multimedia, 2018, 20(8):2035-2048.[doi:10.1109/TMM.2017.2763321
    [2] Krishna AB, Saxena S, Kamboj VK. A novel statistical approach to numerical and multidisciplinary design optimization problems using pattern search inspired Harris hawks optimizer. Neural Computing and Applications, 2021, 33(12):7031-7072.[doi:10.1007/s00521-020-05475-5
    [3] Dokeroglu T, Sevinc E, Kucukyilmaz T, et al. A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 2019, 137:106040
    [4] 周蓉, 李俊, 王浩. 基于灰狼优化的反向学习粒子群算法. 计算机工程与应用, 2020, 56(7):48-56.[doi:10.3778/j.issn.1002-8331.1904-0203
    [5] Chen MR, Huang YY, Zeng GQ, et al. An improved bat algorithm hybridized with extremal optimization and Boltzmann selection. Expert Systems with Applications, 2021, 175:114812.[doi:10.1016/j.eswa.2021.114812
    [6] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69:46-61.[doi:10.1016/j.advengsoft.2013.12.007
    [7] 龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法. 系统工程理论与实践, 2017, 37(11):2983-2994.[doi:10.12011/1000-6788(2017)11-2983-12
    [8] Mirjalili S, Gandomi AH, Mirjalili SZ, et al. Salp swarm algorithm:A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 2017, 114:163-191.[doi:10.1016/j.advengsoft.2017.07.002
    [9] Arora S, Singh S. Butterfly optimization algorithm:A novel approach for global optimization. Soft Computing, 2019, 23(3):715-734.[doi:10.1007/s00500-018-3102-4
    [10] Mirjalili S. Moth-flame optimization algorithm:A novel nature-inspired heuristic paradigm. Knowledge-based Systems, 2015, 89:228-249.[doi:10.1016/j.knosys.2015.07.006
    [11] Heidari AA, Mirjalili S, Faris H, et al. Harris hawks optimization:Algorithm and applications. Future Generation Computer Systems, 2019, 97:849-872.[doi:10.1016/j.future.2019.02.028
    [12] Li CY, Li J, Chen HL, et al. Enhanced Harris hawks optimization with multi-strategy for global optimization tasks. Expert Systems with Applications, 2021, 185:115499.[doi:10.1016/j.eswa.2021.115499
    [13] Hussain K, Neggaz N, Zhu W, et al. An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection. Expert Systems with Applications, 2021, 176:114778.[doi:10.1016/j.eswa.2021.114778
    [14] Rodríguez-Esparza E, Zanella-Calzada LA, Oliva D, et al. An efficient Harris hawks-inspired image segmentation method. Expert Systems with Applications, 2020, 155:113428.[doi:10.1016/j.eswa.2020.113428
    [15] 刘小宁, 魏霞, 谢丽蓉. 混合哈里斯鹰算法求解作业车间调度问题. 计算机应用研究, 2022, 39(6):1673-1677.[doi:10.19734/j.issn.1001-3695.2021.11.0640
    [16] Gharehchopogh FS, Abdollahzadeh B. An efficient Harris hawk optimization algorithm for solving the travelling salesman problem. Cluster Computing, 2022, 25(3):1981-2005.[doi:10.1007/s10586-021-03304-5
    [17] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997, 1(1):67-82.[doi:10.1109/4235.585893
    [18] Chen H, Heidari AA, Chen HL, et al. Multi-population differential evolution-assisted Harris hawks optimization:Framework and case studies. Future Generation Computer Systems, 2020, 111:175-198.[doi:10.1016/j.future.2020.04.008
    [19] Kamboj VK, Nandi A, Bhadoria A, et al. An intensify Harris hawks optimizer for numerical and engineering optimization problems. Applied Soft Computing, 2020, 89:106018.[doi:10.1016/j.asoc.2019.106018
    [20] Al-Betar MA, Awadallah MA, Heidari AA, et al. Survival exploration strategies for Harris hawks optimizer. Expert Systems with Applications, 2021, 168:114243.[doi:10.1016/j.eswa.2020.114243
    [21] Hussien AG, Amin M. A self-adaptive Harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. International Journal of Machine Learning and Cybernetics, 2022, 13(2):309-336.[doi:10.1007/s13042-021-01326-4
    [22] Yang XS. Firefly algorithm, lévy flights and global optimization. In:Bramer M, Ellis R, Petridis M, eds. Research and Development in Intelligent Systems XXVI. London:Springer, 2010. 209-218.
    [23] Joe S, Kuo FY. Remark on algorithm 659:Implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software, 2003, 29(1):49-57.[doi:10.1145/641876.641879
    [24] Chen MR, Chen JH, Zeng GQ, et al. An improved artificial bee colony algorithm combined with extremal optimization and Boltzmann selection probability. Swarm and Evolutionary Computation, 2019, 49:158-177.[doi:10.1016/j.swevo.2019.06.005
    [25] Tizhoosh HR. Opposition-based learning:A new scheme for machine intelligence. Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Vienna:IEEE, 2006. 695-701.
    [26] Demšar J. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 2006, 7:1-30
    [27] Fan Q, Chen ZJ, Xia ZH. A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems. Soft Computing, 2020, 24(19):14825-14843.[doi:10.1007/s00500-020-04834-7
    [28] García S, Fernández A, Luengo J, et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining:Experimental analysis of power. Information Sciences, 2010, 180(10):2044-2064.[doi:10.1016/j.ins.2009.12.010
    [29] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011, 1(1):3-18.[doi:10.1016/j.swevo.2011.02.002
    [30] 郎春博, 贾鹤鸣, 邢致恺, 等. 基于改进正余弦优化算法的多阈值图像分割. 计算机应用研究, 2020, 37(4):1215-1220.[doi:10.19734/j.issn.1001-3695.2018.10.0779
    [31] Sadollah A, Bahreininejad A, Eskandar H, et al. Mine blast algorithm:A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 2013, 13(5):2592-2612.[doi:10.1016/j.asoc.2012.11.026
    [32] Ragsdell KM, Phillips DT. Optimal design of a class of welded structures using geometric programming. Journal of Manufacturing Science and Engineering, 1976, 98(3):1021-1025
    [33] Deb K. Optimal design of a welded beam via genetic algorithms. AIAA Journal, 1991, 29(11):2013-2015.[doi:10.2514/3.10834
    [34] Mezura-Montes E, Coello CAC. A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, 2005, 9(1):1-17.[doi:10.1109/TEVC.2004.836819
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张海林,陈泯融.基于混合策略的改进哈里斯鹰优化算法.计算机系统应用,2023,32(1):166-178

复制
分享
文章指标
  • 点击次数:1224
  • 下载次数: 3181
  • HTML阅读次数: 1492
  • 引用次数: 0
历史
  • 收稿日期:2022-06-11
  • 最后修改日期:2022-07-06
  • 在线发布日期: 2022-09-08
文章二维码
您是第11292323位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号