基于生成对抗网络的文本生成图像算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Text-to-image Algorithm Based on Generative Adversarial Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文本生成图像算法对生成图像的质量和文本匹配度有很高的要求. 为了提高生成图像的清晰度, 在现有算法的基础上改进生成对抗网络模型. 加入动态记忆网络、细节校正模块(DCM)、文本图像仿射组合模块(ACM)来提高生成图片的质量. 其中动态记忆网络可以细化模糊图像并选择重要的文本信息存储, 以提高下一阶段生成图像的质量. DCM纠正细节, 完成合成图像中缺失部分. ACM编码原始图像特征, 重建与文本描述无关的部分. 改进后的模型实现了两个目标, 一是根据给定文本生成高质量的图片, 同时保留与文本无关的内容. 二是使生成图像不再较大程度依赖于初始图像的生成质量. 通过在CUB-200-2011鸟类数据集进行研究实验, 结果表明相较之前的算法模型, FID (Frechet inception)有了显著的改善, 结果由16.09变为10.40. 证明了算法的可行性和先进性.

    Abstract:

    Text-to-image algorithm requires high image quality and text matching. In order to improve the clarity of generated images, a generative adversarial network model is improved based on existing algorithms. Dynamic memory network, detail correction module (DCM), and text image affine combination module (ACM) are added to improve the quality of generated images. Specifically, the dynamic memory network can refine fuzzy images and select important text information storage to improve the quality of images generated in the next stage. DCM corrects details and repairs missing parts of composite images. ACM encodes original image features and reconstructs parts irrelevant to the text description. The improved model achieves two goals. On the one hand, high-quality images are generated according to given texts, with contents that are irrelevant to the texts preserved. Second, generated images do not greatly rely on the quality of initial images. Through experiments on the CUB-200-2011 bird data set, the results show that compared with previous algorithm models, the Frechet inception (FID) has been significantly improved, and the result has changed from 16.09 to 10.40, which proves that the algorithm is feasible and advanced.

    参考文献
    相似文献
    引证文献
引用本文

段亚茹,赵嘉雨,何立明.基于生成对抗网络的文本生成图像算法.计算机系统应用,2023,32(1):348-357

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-11
  • 最后修改日期:2022-06-15
  • 录用日期:
  • 在线发布日期: 2022-09-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号