异构WSN中基于改进哈里斯鹰的分簇算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Clustering Algorithm Based on Improved Harris Hawks in Heterogeneous WSN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无线传感器网络中传统的低功耗自适应集簇分层型协议存在的节点能耗过高、网络生存周期短以及负载不均衡等问题, 本文提出了一种异构传感网络下的多目标簇头选举和基于模拟退火的哈里斯鹰路由优化算法(LEACH-MHO). 这种改进算法首先在计算节点最优阈值的基础上, 构建新的考量能耗和负载的适应度函数, 找到最优簇首节点, 保证簇首节点的均匀分布; 再建立基于哈里斯鹰优化器的路径选择策略, 同时嵌入模拟退火算法, 防止过早陷入局部最优; 最后使用评估函数筛选出可加入到最佳路径的簇头, 缩短簇头节点到基站的通信距离. 仿真实验数据表明, 与CREEP、LEACH-C、LEACH算法相比, 本文算法的网络生存寿命分别延长了22.18%、77.83%和180.52%, 能更有效地延长网络生存寿命.

    Abstract:

    Traditional low-power adaptive hierarchical cluster protocols in wireless sensor networks have high node energy consumption, short network lifetime, and unbalanced load. In order to solve these problems, this study proposes a Harris hawks routing optimization algorithm that reflects multi-objective cluster head election and is based on simulated annealing in heterogeneous sensor networks. On the basis of calculating the optimal threshold of nodes, the improved algorithm firstly constructs a new fitness function considering energy consumption and load to find the optimal cluster head node and ensure the uniform distribution of cluster head nodes. Then, a path selection strategy based on Harris hawks optimizer is established, and the simulated annealing algorithm is embedded to prevent from premature local optimum. Finally, the study uses an evaluation function to select cluster heads that can be added to the optimal path to shorten the communication distance between cluster head nodes and base stations. The simulation results show that compared with the CREEP, LEACH-C, and LEACH algorithms, the proposed algorithm prolong the network lifetime by 22.18%, 77.83%, and 180.52%, respectively, and thus they can prolong the network lifetime more effectively.

    参考文献
    相似文献
    引证文献
引用本文

林新宇,李明.异构WSN中基于改进哈里斯鹰的分簇算法.计算机系统应用,2023,32(1):233-240

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-10
  • 最后修改日期:2022-06-15
  • 录用日期:
  • 在线发布日期: 2022-08-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号