摘要:针对目前现有的新闻推荐系统未能充分考虑新闻的语义信息, 对新闻文本建模因子的单一性问题, 提出注意力与多视角融合的新闻推荐算法(Attention-BodyTitleEvent, Attention-BTE). 利用BERT模型以及注意力机制分别对新闻标题、正文、事件向量化, 将三者融合即新闻向量化表示, 再对候选新闻和用户浏览新闻数据进行处理, 分别得到对应的候选新闻向量化和用户向量化, 并将其进行点乘得到用户点击候选新闻的概率, 即新闻推荐结果. 实验数据表明, 与其他的新闻推荐算法相比, 该模型在F1指标上提高了约6%.